Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem17 Structured version   Visualization version   Unicode version

Theorem knoppndvlem17 32519
Description: Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 12-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem17.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppndvlem17.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppndvlem17.w  |-  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)
knoppndvlem17.a  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
knoppndvlem17.b  |-  B  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( M  +  1 ) )
knoppndvlem17.c  |-  ( ph  ->  C  e.  ( -u
1 (,) 1 ) )
knoppndvlem17.j  |-  ( ph  ->  J  e.  NN0 )
knoppndvlem17.m  |-  ( ph  ->  M  e.  ZZ )
knoppndvlem17.n  |-  ( ph  ->  N  e.  NN )
knoppndvlem17.1  |-  ( ph  ->  1  <  ( N  x.  ( abs `  C
) ) )
Assertion
Ref Expression
knoppndvlem17  |-  ( ph  ->  ( ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  x.  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  <_  ( ( abs `  ( ( W `  B )  -  ( W `  A )
) )  /  ( B  -  A )
) )
Distinct variable groups:    A, i, n, w, y    x, A, i, w    B, i, n, w, y    x, B    C, i, n, y   
i, F, w    i, J, n, y    x, J   
n, M, y    x, M    i, N, n, y   
x, N    T, n, y    ph, i, n, w, y
Allowed substitution hints:    ph( x)    C( x, w)    T( x, w, i)    F( x, y, n)    J( w)    M( w, i)    N( w)    W( x, y, w, i, n)

Proof of Theorem knoppndvlem17
StepHypRef Expression
1 knoppndvlem17.c . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  ( -u
1 (,) 1 ) )
21knoppndvlem3 32505 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  e.  RR  /\  ( abs `  C
)  <  1 ) )
32simpld 475 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR )
43recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
54abscld 14175 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  C
)  e.  RR )
6 knoppndvlem17.j . . . . . . . . . 10  |-  ( ph  ->  J  e.  NN0 )
75, 6reexpcld 13025 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  C
) ^ J )  e.  RR )
8 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
98a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  RR )
10 2ne0 11113 . . . . . . . . . 10  |-  2  =/=  0
1110a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  =/=  0 )
127, 9, 11redivcld 10853 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  /  2 )  e.  RR )
1312recnd 10068 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  /  2 )  e.  CC )
14 1red 10055 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
15 knoppndvlem17.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
1615nnred 11035 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  RR )
179, 16remulcld 10070 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
1817, 5remulcld 10070 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  N )  x.  ( abs `  C ) )  e.  RR )
1918, 14resubcld 10458 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 )  e.  RR )
20 0red 10041 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  RR )
21 0lt1 10550 . . . . . . . . . . . . . 14  |-  0  <  1
2221a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  1 )
23 knoppndvlem17.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  <  ( N  x.  ( abs `  C
) ) )
241, 15, 23knoppndvlem12 32514 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  =/=  1  /\  1  <  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) )
2524simprd 479 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) )
2620, 14, 19, 22, 25lttrd 10198 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) )
2719, 26jca 554 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 )  e.  RR  /\  0  <  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) )
28 gt0ne0 10493 . . . . . . . . . . 11  |-  ( ( ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 )  e.  RR  /\  0  <  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) )  ->  (
( ( 2  x.  N )  x.  ( abs `  C ) )  -  1 )  =/=  0 )
2927, 28syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 )  =/=  0 )
3014, 19, 29redivcld 10853 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
( ( 2  x.  N )  x.  ( abs `  C ) )  -  1 ) )  e.  RR )
3114, 30resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) )  e.  RR )
3231recnd 10068 . . . . . . 7  |-  ( ph  ->  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) )  e.  CC )
3313, 32mulcomd 10061 . . . . . 6  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  / 
2 )  x.  (
1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  =  ( ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) )  x.  ( ( ( abs `  C ) ^ J
)  /  2 ) ) )
3433oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( ( ( abs `  C
) ^ J )  /  2 )  x.  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) ) )  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  =  ( ( ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) )  x.  ( ( ( abs `  C ) ^ J )  / 
2 ) )  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )
35 2rp 11837 . . . . . . . . . . 11  |-  2  e.  RR+
3635a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR+ )
3715nnrpd 11870 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR+ )
3836, 37rpmulcld 11888 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  N
)  e.  RR+ )
396nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  J  e.  ZZ )
4039znegcld 11484 . . . . . . . . 9  |-  ( ph  -> 
-u J  e.  ZZ )
4138, 40rpexpcld 13032 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  e.  RR+ )
4241rphalfcld 11884 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  e.  RR+ )
4342rpcnd 11874 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  e.  CC )
4442rpne0d 11877 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  =/=  0 )
4532, 13, 43, 44divassd 10836 . . . . 5  |-  ( ph  ->  ( ( ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) )  x.  ( ( ( abs `  C ) ^ J
)  /  2 ) )  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  =  ( ( 1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) )  x.  ( ( ( ( abs `  C ) ^ J )  / 
2 )  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) ) )
4613, 43, 44divcld 10801 . . . . . . 7  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  / 
2 )  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  e.  CC )
4732, 46mulcomd 10061 . . . . . 6  |-  ( ph  ->  ( ( 1  -  ( 1  /  (
( ( 2  x.  N )  x.  ( abs `  C ) )  -  1 ) ) )  x.  ( ( ( ( abs `  C
) ^ J )  /  2 )  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  =  ( ( ( ( ( abs `  C
) ^ J )  /  2 )  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) )  x.  (
1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) ) )
487recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  C
) ^ J )  e.  CC )
4941rpcnd 11874 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  e.  CC )
509recnd 10068 . . . . . . . . 9  |-  ( ph  ->  2  e.  CC )
5141rpne0d 11877 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  =/=  0 )
5248, 49, 50, 51, 11divcan7d 10829 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  / 
2 )  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  =  ( ( ( abs `  C
) ^ J )  /  ( ( 2  x.  N ) ^ -u J ) ) )
5317recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  N
)  e.  CC )
5438rpne0d 11877 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  N
)  =/=  0 )
5553, 54, 39expnegd 13015 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  =  ( 1  /  ( ( 2  x.  N ) ^ J ) ) )
5655oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  /  ( ( 2  x.  N ) ^ -u J ) )  =  ( ( ( abs `  C
) ^ J )  /  ( 1  / 
( ( 2  x.  N ) ^ J
) ) ) )
57 1cnd 10056 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
5853, 6expcld 13008 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  N ) ^ J
)  e.  CC )
5920, 22gtned 10172 . . . . . . . . . 10  |-  ( ph  ->  1  =/=  0 )
6053, 54, 39expne0d 13014 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  N ) ^ J
)  =/=  0 )
6148, 57, 58, 59, 60divdiv2d 10833 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  /  ( 1  /  ( ( 2  x.  N ) ^ J ) ) )  =  ( ( ( ( abs `  C
) ^ J )  x.  ( ( 2  x.  N ) ^ J ) )  / 
1 ) )
6248, 58mulcld 10060 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  x.  ( ( 2  x.  N ) ^ J ) )  e.  CC )
6362div1d 10793 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  x.  ( ( 2  x.  N ) ^ J
) )  /  1
)  =  ( ( ( abs `  C
) ^ J )  x.  ( ( 2  x.  N ) ^ J ) ) )
6448, 58mulcomd 10061 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  x.  ( ( 2  x.  N ) ^ J ) )  =  ( ( ( 2  x.  N ) ^ J )  x.  ( ( abs `  C
) ^ J ) ) )
6553, 54jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2  x.  N )  e.  CC  /\  ( 2  x.  N
)  =/=  0 ) )
665recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  C
)  e.  CC )
671, 15, 23knoppndvlem13 32515 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  =/=  0 )
684, 67absne0d 14186 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  C
)  =/=  0 )
6966, 68jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  C
)  e.  CC  /\  ( abs `  C )  =/=  0 ) )
7065, 69, 393jca 1242 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2  x.  N )  e.  CC  /\  ( 2  x.  N )  =/=  0 )  /\  (
( abs `  C
)  e.  CC  /\  ( abs `  C )  =/=  0 )  /\  J  e.  ZZ )
)
71 mulexpz 12900 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  N )  e.  CC  /\  ( 2  x.  N
)  =/=  0 )  /\  ( ( abs `  C )  e.  CC  /\  ( abs `  C
)  =/=  0 )  /\  J  e.  ZZ )  ->  ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  =  ( ( ( 2  x.  N
) ^ J )  x.  ( ( abs `  C ) ^ J
) ) )
7270, 71syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  =  ( ( ( 2  x.  N
) ^ J )  x.  ( ( abs `  C ) ^ J
) ) )
7372eqcomd 2628 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( abs `  C
) ^ J ) )  =  ( ( ( 2  x.  N
)  x.  ( abs `  C ) ) ^ J ) )
7463, 64, 733eqtrd 2660 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  x.  ( ( 2  x.  N ) ^ J
) )  /  1
)  =  ( ( ( 2  x.  N
)  x.  ( abs `  C ) ) ^ J ) )
7556, 61, 743eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  C ) ^ J
)  /  ( ( 2  x.  N ) ^ -u J ) )  =  ( ( ( 2  x.  N
)  x.  ( abs `  C ) ) ^ J ) )
7652, 75eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  / 
2 )  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  =  ( ( ( 2  x.  N
)  x.  ( abs `  C ) ) ^ J ) )
7776oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( abs `  C
) ^ J )  /  2 )  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) )  x.  (
1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  =  ( ( ( ( 2  x.  N
)  x.  ( abs `  C ) ) ^ J )  x.  (
1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) ) )
7847, 77eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( 1  -  ( 1  /  (
( ( 2  x.  N )  x.  ( abs `  C ) )  -  1 ) ) )  x.  ( ( ( ( abs `  C
) ^ J )  /  2 )  / 
( ( ( 2  x.  N ) ^ -u J )  /  2
) ) )  =  ( ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  x.  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) ) )
7934, 45, 783eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( ( ( ( abs `  C
) ^ J )  /  2 )  x.  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) ) )  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  =  ( ( ( ( 2  x.  N )  x.  ( abs `  C ) ) ^ J )  x.  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) ) ) )
8079eqcomd 2628 . . 3  |-  ( ph  ->  ( ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  x.  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  =  ( ( ( ( ( abs `  C
) ^ J )  /  2 )  x.  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) ) )  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) ) )
8112, 31remulcld 10070 . . . 4  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  / 
2 )  x.  (
1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  e.  RR )
82 knoppndvlem17.t . . . . . . 7  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
83 knoppndvlem17.f . . . . . . 7  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
84 knoppndvlem17.w . . . . . . 7  |-  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)
85 knoppndvlem17.b . . . . . . . . 9  |-  B  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( M  +  1 ) )
8685a1i 11 . . . . . . . 8  |-  ( ph  ->  B  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  ( M  + 
1 ) ) )
87 knoppndvlem17.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
8887peano2zd 11485 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
8915, 39, 88knoppndvlem1 32503 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  ( M  +  1 ) )  e.  RR )
9086, 89eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
912simprd 479 . . . . . . 7  |-  ( ph  ->  ( abs `  C
)  <  1 )
9282, 83, 84, 90, 15, 3, 91knoppcld 32495 . . . . . 6  |-  ( ph  ->  ( W `  B
)  e.  CC )
93 knoppndvlem17.a . . . . . . . . 9  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
9493a1i 11 . . . . . . . 8  |-  ( ph  ->  A  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  M ) )
9515, 39, 87knoppndvlem1 32503 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )  e.  RR )
9694, 95eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9782, 83, 84, 96, 15, 3, 91knoppcld 32495 . . . . . 6  |-  ( ph  ->  ( W `  A
)  e.  CC )
9892, 97subcld 10392 . . . . 5  |-  ( ph  ->  ( ( W `  B )  -  ( W `  A )
)  e.  CC )
9998abscld 14175 . . . 4  |-  ( ph  ->  ( abs `  (
( W `  B
)  -  ( W `
 A ) ) )  e.  RR )
10082, 83, 84, 93, 85, 1, 6, 87, 15, 23knoppndvlem15 32517 . . . 4  |-  ( ph  ->  ( ( ( ( abs `  C ) ^ J )  / 
2 )  x.  (
1  -  ( 1  /  ( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  <_  ( abs `  (
( W `  B
)  -  ( W `
 A ) ) ) )
10181, 99, 42, 100lediv1dd 11930 . . 3  |-  ( ph  ->  ( ( ( ( ( abs `  C
) ^ J )  /  2 )  x.  ( 1  -  (
1  /  ( ( ( 2  x.  N
)  x.  ( abs `  C ) )  - 
1 ) ) ) )  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  <_  ( ( abs `  ( ( W `
 B )  -  ( W `  A ) ) )  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )
10280, 101eqbrtrd 4675 . 2  |-  ( ph  ->  ( ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  x.  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  <_  ( ( abs `  ( ( W `  B )  -  ( W `  A )
) )  /  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) ) )
10393, 85, 6, 87, 15knoppndvlem16 32518 . . . 4  |-  ( ph  ->  ( B  -  A
)  =  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )
104103eqcomd 2628 . . 3  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  =  ( B  -  A ) )
105104oveq2d 6666 . 2  |-  ( ph  ->  ( ( abs `  (
( W `  B
)  -  ( W `
 A ) ) )  /  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  =  ( ( abs `  ( ( W `  B )  -  ( W `  A ) ) )  /  ( B  -  A ) ) )
106102, 105breqtrd 4679 1  |-  ( ph  ->  ( ( ( ( 2  x.  N )  x.  ( abs `  C
) ) ^ J
)  x.  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  x.  ( abs `  C
) )  -  1 ) ) ) )  <_  ( ( abs `  ( ( W `  B )  -  ( W `  A )
) )  /  ( B  -  A )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832   (,)cioo 12175   |_cfl 12591   ^cexp 12860   abscabs 13974   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ulm 24131
This theorem is referenced by:  knoppndvlem21  32523
  Copyright terms: Public domain W3C validator