Proof of Theorem knoppndvlem14
| Step | Hyp | Ref
| Expression |
| 1 | | knoppndvlem14.t |
. . . . . 6
                 |
| 2 | | knoppndvlem14.f |
. . . . . 6
 
                     |
| 3 | | knoppndvlem14.b |
. . . . . . . 8
              |
| 4 | 3 | a1i 11 |
. . . . . . 7
                |
| 5 | | knoppndvlem14.n |
. . . . . . . 8
   |
| 6 | | knoppndvlem14.j |
. . . . . . . . 9
   |
| 7 | 6 | nn0zd 11480 |
. . . . . . . 8
   |
| 8 | | knoppndvlem14.m |
. . . . . . . . 9
   |
| 9 | 8 | peano2zd 11485 |
. . . . . . . 8
     |
| 10 | 5, 7, 9 | knoppndvlem1 32503 |
. . . . . . 7
                |
| 11 | 4, 10 | eqeltrd 2701 |
. . . . . 6
   |
| 12 | | knoppndvlem14.c |
. . . . . . . 8
        |
| 13 | 12 | knoppndvlem3 32505 |
. . . . . . 7
     
   |
| 14 | 13 | simpld 475 |
. . . . . 6
   |
| 15 | 1, 2, 11, 14, 5 | knoppndvlem5 32507 |
. . . . 5
                   |
| 16 | | knoppndvlem14.a |
. . . . . . . 8
            |
| 17 | 16 | a1i 11 |
. . . . . . 7
              |
| 18 | 5, 7, 8 | knoppndvlem1 32503 |
. . . . . . 7
              |
| 19 | 17, 18 | eqeltrd 2701 |
. . . . . 6
   |
| 20 | 1, 2, 19, 14, 5 | knoppndvlem5 32507 |
. . . . 5
                   |
| 21 | 15, 20 | resubcld 10458 |
. . . 4
                      
              |
| 22 | 21 | recnd 10068 |
. . 3
                      
              |
| 23 | 22 | abscld 14175 |
. 2
                                         |
| 24 | 11, 19 | resubcld 10458 |
. . . . 5
     |
| 25 | 24 | recnd 10068 |
. . . 4
     |
| 26 | 25 | abscld 14175 |
. . 3
    
    |
| 27 | | fzfid 12772 |
. . . 4
    
    |
| 28 | | 2re 11090 |
. . . . . . . . 9
 |
| 29 | 28 | a1i 11 |
. . . . . . . 8
   |
| 30 | | nnre 11027 |
. . . . . . . . 9
   |
| 31 | 5, 30 | syl 17 |
. . . . . . . 8
   |
| 32 | 29, 31 | remulcld 10070 |
. . . . . . 7
     |
| 33 | 14 | recnd 10068 |
. . . . . . . 8
   |
| 34 | 33 | abscld 14175 |
. . . . . . 7
       |
| 35 | 32, 34 | remulcld 10070 |
. . . . . 6
           |
| 36 | 35 | adantr 481 |
. . . . 5
 
   
             |
| 37 | | elfznn0 12433 |
. . . . . 6
         |
| 38 | 37 | adantl 482 |
. . . . 5
 
   
     |
| 39 | 36, 38 | reexpcld 13025 |
. . . 4
 
   
                 |
| 40 | 27, 39 | fsumrecl 14465 |
. . 3
                       |
| 41 | 26, 40 | remulcld 10070 |
. 2
     
      
                  |
| 42 | 34, 6 | reexpcld 13025 |
. . . 4
           |
| 43 | | 2ne0 11113 |
. . . . 5
 |
| 44 | 43 | a1i 11 |
. . . 4
   |
| 45 | 42, 29, 44 | redivcld 10853 |
. . 3
             |
| 46 | | 1red 10055 |
. . . 4
   |
| 47 | 35, 46 | resubcld 10458 |
. . . 4
             |
| 48 | | 0red 10041 |
. . . . . 6
   |
| 49 | | 0lt1 10550 |
. . . . . . . 8
 |
| 50 | 49 | a1i 11 |
. . . . . . 7
   |
| 51 | | knoppndvlem14.1 |
. . . . . . . . 9
         |
| 52 | 12, 5, 51 | knoppndvlem12 32514 |
. . . . . . . 8
         
             |
| 53 | 52 | simprd 479 |
. . . . . . 7
             |
| 54 | 48, 46, 47, 50, 53 | lttrd 10198 |
. . . . . 6
             |
| 55 | 48, 54 | jca 554 |
. . . . 5
               |
| 56 | | ltne 10134 |
. . . . 5
                         |
| 57 | 55, 56 | syl 17 |
. . . 4
             |
| 58 | 46, 47, 57 | redivcld 10853 |
. . 3
               |
| 59 | 45, 58 | remulcld 10070 |
. 2
                           |
| 60 | 1, 2, 19, 11, 12, 6, 5 | knoppndvlem11 32513 |
. 2
                                           
      
                  |
| 61 | 4, 17 | oveq12d 6668 |
. . . . . . 7
                               |
| 62 | 29 | recnd 10068 |
. . . . . . . . . . . . . 14
   |
| 63 | 31 | recnd 10068 |
. . . . . . . . . . . . . 14
   |
| 64 | | nnge1 11046 |
. . . . . . . . . . . . . . . . . 18
   |
| 65 | 5, 64 | syl 17 |
. . . . . . . . . . . . . . . . 17

  |
| 66 | 48, 46, 31, 50, 65 | ltletrd 10197 |
. . . . . . . . . . . . . . . 16
   |
| 67 | 48, 66 | jca 554 |
. . . . . . . . . . . . . . 15
     |
| 68 | | ltne 10134 |
. . . . . . . . . . . . . . 15
     |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . 14
   |
| 70 | 62, 63, 44, 69 | mulne0d 10679 |
. . . . . . . . . . . . 13
     |
| 71 | 7 | znegcld 11484 |
. . . . . . . . . . . . 13
    |
| 72 | 32, 70, 71 | reexpclzd 13034 |
. . . . . . . . . . . 12
          |
| 73 | 72, 29, 44 | redivcld 10853 |
. . . . . . . . . . 11
            |
| 74 | 73 | recnd 10068 |
. . . . . . . . . 10
            |
| 75 | 9 | zcnd 11483 |
. . . . . . . . . 10
     |
| 76 | 8 | zcnd 11483 |
. . . . . . . . . 10
   |
| 77 | 74, 75, 76 | subdid 10486 |
. . . . . . . . 9
                                            |
| 78 | 77 | eqcomd 2628 |
. . . . . . . 8
                                            |
| 79 | | 1cnd 10056 |
. . . . . . . . . 10
   |
| 80 | 76, 79 | pncan2d 10394 |
. . . . . . . . 9
       |
| 81 | 80 | oveq2d 6666 |
. . . . . . . 8
                             |
| 82 | 74 | mulid1d 10057 |
. . . . . . . 8
                       |
| 83 | 78, 81, 82 | 3eqtrd 2660 |
. . . . . . 7
                                      |
| 84 | 61, 83 | eqtrd 2656 |
. . . . . 6
              |
| 85 | 84 | fveq2d 6195 |
. . . . 5
    
                 |
| 86 | 72 | recnd 10068 |
. . . . . . 7
          |
| 87 | 86, 62, 44 | absdivd 14194 |
. . . . . 6
                                 |
| 88 | 62, 63 | mulcld 10060 |
. . . . . . . . . 10
     |
| 89 | 88, 70, 71 | 3jca 1242 |
. . . . . . . . 9
      
   |
| 90 | | absexpz 14045 |
. . . . . . . . 9
      
                         |
| 91 | 89, 90 | syl 17 |
. . . . . . . 8
                         |
| 92 | 62, 63 | absmuld 14193 |
. . . . . . . . . 10
                   |
| 93 | | 0le2 11111 |
. . . . . . . . . . . . . 14
 |
| 94 | 28, 93 | pm3.2i 471 |
. . . . . . . . . . . . 13
   |
| 95 | | absid 14036 |
. . . . . . . . . . . . 13
         |
| 96 | 94, 95 | ax-mp 5 |
. . . . . . . . . . . 12
     |
| 97 | 96 | a1i 11 |
. . . . . . . . . . 11
       |
| 98 | 48, 31, 66 | ltled 10185 |
. . . . . . . . . . . 12

  |
| 99 | 31, 98 | absidd 14161 |
. . . . . . . . . . 11
       |
| 100 | 97, 99 | oveq12d 6668 |
. . . . . . . . . 10
               |
| 101 | 92, 100 | eqtrd 2656 |
. . . . . . . . 9
           |
| 102 | 101 | oveq1d 6665 |
. . . . . . . 8
                     |
| 103 | 91, 102 | eqtrd 2656 |
. . . . . . 7
                     |
| 104 | 103, 97 | oveq12d 6668 |
. . . . . 6
                             |
| 105 | 87, 104 | eqtrd 2656 |
. . . . 5
                         |
| 106 | 85, 105 | eqtrd 2656 |
. . . 4
    
             |
| 107 | 35 | recnd 10068 |
. . . . . 6
           |
| 108 | 52 | simpld 475 |
. . . . . 6
           |
| 109 | 107, 108,
6 | geoser 14599 |
. . . . 5
                                                 |
| 110 | 107, 6 | expcld 13008 |
. . . . . 6
               |
| 111 | 108 | necomd 2849 |
. . . . . 6
           |
| 112 | 79, 110, 79, 107, 111 | div2subd 10851 |
. . . . 5
                                                       |
| 113 | 109, 112 | eqtrd 2656 |
. . . 4
                                                 |
| 114 | 106, 113 | oveq12d 6668 |
. . 3
     
      
                                                       |
| 115 | 113, 40 | eqeltrrd 2702 |
. . . . 5
                             |
| 116 | 35, 6 | reexpcld 13025 |
. . . . . 6
               |
| 117 | 116, 47, 57 | redivcld 10853 |
. . . . 5
                           |
| 118 | | 2rp 11837 |
. . . . . . 7
 |
| 119 | 118 | a1i 11 |
. . . . . 6
   |
| 120 | 119 | rpgt0d 11875 |
. . . . . . . . . 10
   |
| 121 | 29, 31, 120, 66 | mulgt0d 10192 |
. . . . . . . . 9
     |
| 122 | 32, 71, 121 | 3jca 1242 |
. . . . . . . 8
    
     |
| 123 | | expgt0 12893 |
. . . . . . . 8
       
         |
| 124 | 122, 123 | syl 17 |
. . . . . . 7
          |
| 125 | 48, 72, 124 | ltled 10185 |
. . . . . 6

         |
| 126 | 72, 119, 125 | divge0d 11912 |
. . . . 5

           |
| 127 | 116, 46 | resubcld 10458 |
. . . . . 6
                 |
| 128 | 47, 54 | elrpd 11869 |
. . . . . 6
             |
| 129 | 116 | lem1d 10957 |
. . . . . 6
                             |
| 130 | 127, 116,
128, 129 | lediv1dd 11930 |
. . . . 5
                                                     |
| 131 | 115, 117,
73, 126, 130 | lemul2ad 10964 |
. . . 4
                                                                           |
| 132 | 47 | recnd 10068 |
. . . . . . 7
             |
| 133 | 110, 132,
57 | divrecd 10804 |
. . . . . 6
                                                     |
| 134 | 133 | oveq2d 6666 |
. . . . 5
                                                                           |
| 135 | 58 | recnd 10068 |
. . . . . . 7
               |
| 136 | 74, 110, 135 | mulassd 10063 |
. . . . . 6
                                                                             |
| 137 | 136 | eqcomd 2628 |
. . . . 5
                                                                             |
| 138 | 86, 110, 62, 44 | div23d 10838 |
. . . . . . . 8
                                                 |
| 139 | 138 | eqcomd 2628 |
. . . . . . 7
                                                 |
| 140 | 88, 70 | jca 554 |
. . . . . . . . . . . 12
         |
| 141 | 34 | recnd 10068 |
. . . . . . . . . . . . 13
       |
| 142 | 12, 5, 51 | knoppndvlem13 32515 |
. . . . . . . . . . . . . 14
   |
| 143 | 33, 142 | absne0d 14186 |
. . . . . . . . . . . . 13
       |
| 144 | 141, 143 | jca 554 |
. . . . . . . . . . . 12
             |
| 145 | 140, 144,
7 | 3jca 1242 |
. . . . . . . . . . 11
                 
   |
| 146 | | mulexpz 12900 |
. . . . . . . . . . 11
                                                 |
| 147 | 145, 146 | syl 17 |
. . . . . . . . . 10
                               |
| 148 | 147 | oveq2d 6666 |
. . . . . . . . 9
                                                 |
| 149 | 88, 6 | expcld 13008 |
. . . . . . . . . . 11
         |
| 150 | 42 | recnd 10068 |
. . . . . . . . . . 11
           |
| 151 | 86, 149, 150 | mulassd 10063 |
. . . . . . . . . 10
                                                     |
| 152 | 151 | eqcomd 2628 |
. . . . . . . . 9
                                                     |
| 153 | 140, 71, 7 | jca32 558 |
. . . . . . . . . . . . . 14
         
    |
| 154 | | expaddz 12904 |
. . . . . . . . . . . . . 14
                                      |
| 155 | 153, 154 | syl 17 |
. . . . . . . . . . . . 13
                           |
| 156 | 155 | eqcomd 2628 |
. . . . . . . . . . . 12
                           |
| 157 | 71 | zcnd 11483 |
. . . . . . . . . . . . . . 15
    |
| 158 | 6 | nn0cnd 11353 |
. . . . . . . . . . . . . . 15
   |
| 159 | 157, 158 | addcomd 10238 |
. . . . . . . . . . . . . 14
         |
| 160 | 158 | negidd 10382 |
. . . . . . . . . . . . . 14
      |
| 161 | 159, 160 | eqtrd 2656 |
. . . . . . . . . . . . 13
      |
| 162 | 161 | oveq2d 6666 |
. . . . . . . . . . . 12
                  |
| 163 | 88 | exp0d 13002 |
. . . . . . . . . . . 12
         |
| 164 | 156, 162,
163 | 3eqtrd 2660 |
. . . . . . . . . . 11
                  |
| 165 | 164 | oveq1d 6665 |
. . . . . . . . . 10
                                      |
| 166 | 150 | mulid2d 10058 |
. . . . . . . . . 10
                     |
| 167 | 165, 166 | eqtrd 2656 |
. . . . . . . . 9
                                    |
| 168 | 148, 152,
167 | 3eqtrd 2660 |
. . . . . . . 8
                                |
| 169 | 168 | oveq1d 6665 |
. . . . . . 7
                                    |
| 170 | 139, 169 | eqtrd 2656 |
. . . . . 6
                                    |
| 171 | 170 | oveq1d 6665 |
. . . . 5
                                                                |
| 172 | 134, 137,
171 | 3eqtrd 2660 |
. . . 4
                                                              |
| 173 | 131, 172 | breqtrd 4679 |
. . 3
                                                                |
| 174 | 114, 173 | eqbrtrd 4675 |
. 2
     
      
                                          |
| 175 | 23, 41, 59, 60, 174 | letrd 10194 |
1
                                                                 |