MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnegnn Structured version   Visualization version   Unicode version

Theorem mulgnegnn 17551
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
mulgnegnn.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgnegnn  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )

Proof of Theorem mulgnegnn
StepHypRef Expression
1 nncn 11028 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  CC )
21negnegd 10383 . . . . 5  |-  ( N  e.  NN  ->  -u -u N  =  N )
32adantr 481 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  -> 
-u -u N  =  N )
43fveq2d 6195 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
54fveq2d 6195 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) ) )
6 nnnegz 11380 . . . 4  |-  ( N  e.  NN  ->  -u N  e.  ZZ )
7 mulg1.b . . . . 5  |-  B  =  ( Base `  G
)
8 eqid 2622 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
9 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
10 mulgnegnn.i . . . . 5  |-  I  =  ( invg `  G )
11 mulg1.m . . . . 5  |-  .x.  =  (.g
`  G )
12 eqid 2622 . . . . 5  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
137, 8, 9, 10, 11, 12mulgval 17543 . . . 4  |-  ( (
-u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  if ( -u N  =  0 ,  ( 0g
`  G ) ,  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) ) )
146, 13sylan 488 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  if ( -u N  =  0 ,  ( 0g
`  G ) ,  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) ) )
15 nnne0 11053 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
16 negeq0 10335 . . . . . . . . 9  |-  ( N  e.  CC  ->  ( N  =  0  <->  -u N  =  0 ) )
1716necon3abid 2830 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  =/=  0  <->  -.  -u N  =  0 ) )
181, 17syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  =/=  0  <->  -.  -u N  =  0 ) )
1915, 18mpbid 222 . . . . . 6  |-  ( N  e.  NN  ->  -.  -u N  =  0 )
2019iffalsed 4097 . . . . 5  |-  ( N  e.  NN  ->  if ( -u N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  -u N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) ,  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) ) )  =  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) )
21 nnre 11027 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
2221renegcld 10457 . . . . . . 7  |-  ( N  e.  NN  ->  -u N  e.  RR )
23 nngt0 11049 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
2421lt0neg2d 10598 . . . . . . . 8  |-  ( N  e.  NN  ->  (
0  <  N  <->  -u N  <  0 ) )
2523, 24mpbid 222 . . . . . . 7  |-  ( N  e.  NN  ->  -u N  <  0 )
26 0re 10040 . . . . . . . 8  |-  0  e.  RR
27 ltnsym 10135 . . . . . . . 8  |-  ( (
-u N  e.  RR  /\  0  e.  RR )  ->  ( -u N  <  0  ->  -.  0  <  -u N ) )
2826, 27mpan2 707 . . . . . . 7  |-  ( -u N  e.  RR  ->  (
-u N  <  0  ->  -.  0  <  -u N
) )
2922, 25, 28sylc 65 . . . . . 6  |-  ( N  e.  NN  ->  -.  0  <  -u N )
3029iffalsed 4097 . . . . 5  |-  ( N  e.  NN  ->  if ( 0  <  -u N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) ,  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) )
3120, 30eqtrd 2656 . . . 4  |-  ( N  e.  NN  ->  if ( -u N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  -u N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) ,  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 -u -u N ) ) )
3231adantr 481 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  if ( -u N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) )  =  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) )
3314, 32eqtrd 2656 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) )
347, 8, 11, 12mulgnn 17547 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
3534fveq2d 6195 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( I `  ( N  .x.  X ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ) )
365, 33, 353eqtr4d 2666 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074   -ucneg 10267   NNcn 11020   ZZcz 11377    seqcseq 12801   Basecbs 15857   +g cplusg 15941   0gc0g 16100   invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-seq 12802  df-mulg 17541
This theorem is referenced by:  mulgsubcl  17555  mulgneg  17560  mulgneg2  17575  cnfldmulg  19778  tgpmulg  21897  xrsmulgzz  29678  archiabllem1b  29746
  Copyright terms: Public domain W3C validator