Proof of Theorem subgmulg
Step | Hyp | Ref
| Expression |
1 | | subgmulg.h |
. . . . . 6

↾s   |
2 | | eqid 2622 |
. . . . . 6
         |
3 | 1, 2 | subg0 17600 |
. . . . 5
 SubGrp 
          |
4 | 3 | 3ad2ant1 1082 |
. . . 4
  SubGrp             |
5 | 4 | ifeq1d 4104 |
. . 3
  SubGrp    
        
                                                                                                   |
6 | | eqid 2622 |
. . . . . . . . . . 11
       |
7 | 1, 6 | ressplusg 15993 |
. . . . . . . . . 10
 SubGrp 
        |
8 | 7 | 3ad2ant1 1082 |
. . . . . . . . 9
  SubGrp           |
9 | 8 | seqeq2d 12808 |
. . . . . . . 8
  SubGrp                             |
10 | 9 | adantr 481 |
. . . . . . 7
   SubGrp  
                           |
11 | 10 | fveq1d 6193 |
. . . . . 6
   SubGrp  
                                 |
12 | 11 | ifeq1d 4104 |
. . . . 5
   SubGrp  
                                                                                             |
13 | | simp2 1062 |
. . . . . . . . . . . . 13
  SubGrp     |
14 | 13 | zred 11482 |
. . . . . . . . . . . 12
  SubGrp     |
15 | | 0re 10040 |
. . . . . . . . . . . 12
 |
16 | | axlttri 10109 |
. . . . . . . . . . . 12
 
       |
17 | 14, 15, 16 | sylancl 694 |
. . . . . . . . . . 11
  SubGrp   

    |
18 | | ioran 511 |
. . . . . . . . . . 11
       |
19 | 17, 18 | syl6bb 276 |
. . . . . . . . . 10
  SubGrp   

    |
20 | 19 | biimpar 502 |
. . . . . . . . 9
   SubGrp   
    |
21 | | simpl1 1064 |
. . . . . . . . . 10
   SubGrp    SubGrp    |
22 | 13 | adantr 481 |
. . . . . . . . . . . . . 14
   SubGrp      |
23 | 22 | znegcld 11484 |
. . . . . . . . . . . . 13
   SubGrp       |
24 | 14 | lt0neg1d 10597 |
. . . . . . . . . . . . . 14
  SubGrp   
    |
25 | 24 | biimpa 501 |
. . . . . . . . . . . . 13
   SubGrp       |
26 | | elnnz 11387 |
. . . . . . . . . . . . 13
 
      |
27 | 23, 25, 26 | sylanbrc 698 |
. . . . . . . . . . . 12
   SubGrp       |
28 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
         |
29 | 28 | subgss 17595 |
. . . . . . . . . . . . . . 15
 SubGrp 
      |
30 | 29 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
  SubGrp         |
31 | | simp3 1063 |
. . . . . . . . . . . . . 14
  SubGrp     |
32 | 30, 31 | sseldd 3604 |
. . . . . . . . . . . . 13
  SubGrp         |
33 | 32 | adantr 481 |
. . . . . . . . . . . 12
   SubGrp          |
34 | | subgmulgcl.t |
. . . . . . . . . . . . 13
.g   |
35 | | eqid 2622 |
. . . . . . . . . . . . 13
                         |
36 | 28, 6, 34, 35 | mulgnn 17547 |
. . . . . . . . . . . 12
                             |
37 | 27, 33, 36 | syl2anc 693 |
. . . . . . . . . . 11
   SubGrp                         |
38 | 31 | adantr 481 |
. . . . . . . . . . . 12
   SubGrp      |
39 | 34 | subgmulgcl 17607 |
. . . . . . . . . . . 12
  SubGrp         |
40 | 21, 23, 38, 39 | syl3anc 1326 |
. . . . . . . . . . 11
   SubGrp         |
41 | 37, 40 | eqeltrrd 2702 |
. . . . . . . . . 10
   SubGrp                      |
42 | | eqid 2622 |
. . . . . . . . . . 11
           |
43 | | eqid 2622 |
. . . . . . . . . . 11
           |
44 | 1, 42, 43 | subginv 17601 |
. . . . . . . . . 10
  SubGrp                  
                                                    |
45 | 21, 41, 44 | syl2anc 693 |
. . . . . . . . 9
   SubGrp                                                        |
46 | 20, 45 | syldan 487 |
. . . . . . . 8
   SubGrp   
                                                      |
47 | 9 | adantr 481 |
. . . . . . . . . 10
   SubGrp   
                            |
48 | 47 | fveq1d 6193 |
. . . . . . . . 9
   SubGrp   
                                    |
49 | 48 | fveq2d 6195 |
. . . . . . . 8
   SubGrp   
                                                      |
50 | 46, 49 | eqtrd 2656 |
. . . . . . 7
   SubGrp   
                                                      |
51 | 50 | anassrs 680 |
. . . . . 6
    SubGrp 
                                                       |
52 | 51 | ifeq2da 4117 |
. . . . 5
   SubGrp  
                                                                                             |
53 | 12, 52 | eqtrd 2656 |
. . . 4
   SubGrp  
                                                                                             |
54 | 53 | ifeq2da 4117 |
. . 3
  SubGrp    
        
                                                                                                   |
55 | 5, 54 | eqtrd 2656 |
. 2
  SubGrp    
        
                                                                                                   |
56 | 28, 6, 2, 42, 34, 35 | mulgval 17543 |
. . 3
 
                                                               |
57 | 13, 32, 56 | syl2anc 693 |
. 2
  SubGrp                                                             |
58 | 1 | subgbas 17598 |
. . . . 5
 SubGrp 
      |
59 | 58 | 3ad2ant1 1082 |
. . . 4
  SubGrp         |
60 | 31, 59 | eleqtrd 2703 |
. . 3
  SubGrp         |
61 | | eqid 2622 |
. . . 4
         |
62 | | eqid 2622 |
. . . 4
       |
63 | | eqid 2622 |
. . . 4
         |
64 | | subgmulg.t |
. . . 4
.g   |
65 | | eqid 2622 |
. . . 4
                         |
66 | 61, 62, 63, 43, 64, 65 | mulgval 17543 |
. . 3
 
                                                               |
67 | 13, 60, 66 | syl2anc 693 |
. 2
  SubGrp                                                             |
68 | 55, 57, 67 | 3eqtr4d 2666 |
1
  SubGrp         |