Proof of Theorem subgmulg
| Step | Hyp | Ref
| Expression |
| 1 | | subgmulg.h |
. . . . . 6

↾s   |
| 2 | | eqid 2622 |
. . . . . 6
         |
| 3 | 1, 2 | subg0 17600 |
. . . . 5
 SubGrp 
          |
| 4 | 3 | 3ad2ant1 1082 |
. . . 4
  SubGrp             |
| 5 | 4 | ifeq1d 4104 |
. . 3
  SubGrp    
        
                                                                                                   |
| 6 | | eqid 2622 |
. . . . . . . . . . 11
       |
| 7 | 1, 6 | ressplusg 15993 |
. . . . . . . . . 10
 SubGrp 
        |
| 8 | 7 | 3ad2ant1 1082 |
. . . . . . . . 9
  SubGrp           |
| 9 | 8 | seqeq2d 12808 |
. . . . . . . 8
  SubGrp                             |
| 10 | 9 | adantr 481 |
. . . . . . 7
   SubGrp  
                           |
| 11 | 10 | fveq1d 6193 |
. . . . . 6
   SubGrp  
                                 |
| 12 | 11 | ifeq1d 4104 |
. . . . 5
   SubGrp  
                                                                                             |
| 13 | | simp2 1062 |
. . . . . . . . . . . . 13
  SubGrp     |
| 14 | 13 | zred 11482 |
. . . . . . . . . . . 12
  SubGrp     |
| 15 | | 0re 10040 |
. . . . . . . . . . . 12
 |
| 16 | | axlttri 10109 |
. . . . . . . . . . . 12
 
       |
| 17 | 14, 15, 16 | sylancl 694 |
. . . . . . . . . . 11
  SubGrp   

    |
| 18 | | ioran 511 |
. . . . . . . . . . 11
       |
| 19 | 17, 18 | syl6bb 276 |
. . . . . . . . . 10
  SubGrp   

    |
| 20 | 19 | biimpar 502 |
. . . . . . . . 9
   SubGrp   
    |
| 21 | | simpl1 1064 |
. . . . . . . . . 10
   SubGrp    SubGrp    |
| 22 | 13 | adantr 481 |
. . . . . . . . . . . . . 14
   SubGrp      |
| 23 | 22 | znegcld 11484 |
. . . . . . . . . . . . 13
   SubGrp       |
| 24 | 14 | lt0neg1d 10597 |
. . . . . . . . . . . . . 14
  SubGrp   
    |
| 25 | 24 | biimpa 501 |
. . . . . . . . . . . . 13
   SubGrp       |
| 26 | | elnnz 11387 |
. . . . . . . . . . . . 13
 
      |
| 27 | 23, 25, 26 | sylanbrc 698 |
. . . . . . . . . . . 12
   SubGrp       |
| 28 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
         |
| 29 | 28 | subgss 17595 |
. . . . . . . . . . . . . . 15
 SubGrp 
      |
| 30 | 29 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
  SubGrp         |
| 31 | | simp3 1063 |
. . . . . . . . . . . . . 14
  SubGrp     |
| 32 | 30, 31 | sseldd 3604 |
. . . . . . . . . . . . 13
  SubGrp         |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . 12
   SubGrp          |
| 34 | | subgmulgcl.t |
. . . . . . . . . . . . 13
.g   |
| 35 | | eqid 2622 |
. . . . . . . . . . . . 13
                         |
| 36 | 28, 6, 34, 35 | mulgnn 17547 |
. . . . . . . . . . . 12
                             |
| 37 | 27, 33, 36 | syl2anc 693 |
. . . . . . . . . . 11
   SubGrp                         |
| 38 | 31 | adantr 481 |
. . . . . . . . . . . 12
   SubGrp      |
| 39 | 34 | subgmulgcl 17607 |
. . . . . . . . . . . 12
  SubGrp         |
| 40 | 21, 23, 38, 39 | syl3anc 1326 |
. . . . . . . . . . 11
   SubGrp         |
| 41 | 37, 40 | eqeltrrd 2702 |
. . . . . . . . . 10
   SubGrp                      |
| 42 | | eqid 2622 |
. . . . . . . . . . 11
           |
| 43 | | eqid 2622 |
. . . . . . . . . . 11
           |
| 44 | 1, 42, 43 | subginv 17601 |
. . . . . . . . . 10
  SubGrp                  
                                                    |
| 45 | 21, 41, 44 | syl2anc 693 |
. . . . . . . . 9
   SubGrp                                                        |
| 46 | 20, 45 | syldan 487 |
. . . . . . . 8
   SubGrp   
                                                      |
| 47 | 9 | adantr 481 |
. . . . . . . . . 10
   SubGrp   
                            |
| 48 | 47 | fveq1d 6193 |
. . . . . . . . 9
   SubGrp   
                                    |
| 49 | 48 | fveq2d 6195 |
. . . . . . . 8
   SubGrp   
                                                      |
| 50 | 46, 49 | eqtrd 2656 |
. . . . . . 7
   SubGrp   
                                                      |
| 51 | 50 | anassrs 680 |
. . . . . 6
    SubGrp 
                                                       |
| 52 | 51 | ifeq2da 4117 |
. . . . 5
   SubGrp  
                                                                                             |
| 53 | 12, 52 | eqtrd 2656 |
. . . 4
   SubGrp  
                                                                                             |
| 54 | 53 | ifeq2da 4117 |
. . 3
  SubGrp    
        
                                                                                                   |
| 55 | 5, 54 | eqtrd 2656 |
. 2
  SubGrp    
        
                                                                                                   |
| 56 | 28, 6, 2, 42, 34, 35 | mulgval 17543 |
. . 3
 
                                                               |
| 57 | 13, 32, 56 | syl2anc 693 |
. 2
  SubGrp                                                             |
| 58 | 1 | subgbas 17598 |
. . . . 5
 SubGrp 
      |
| 59 | 58 | 3ad2ant1 1082 |
. . . 4
  SubGrp         |
| 60 | 31, 59 | eleqtrd 2703 |
. . 3
  SubGrp         |
| 61 | | eqid 2622 |
. . . 4
         |
| 62 | | eqid 2622 |
. . . 4
       |
| 63 | | eqid 2622 |
. . . 4
         |
| 64 | | subgmulg.t |
. . . 4
.g   |
| 65 | | eqid 2622 |
. . . 4
                         |
| 66 | 61, 62, 63, 43, 64, 65 | mulgval 17543 |
. . 3
 
                                                               |
| 67 | 13, 60, 66 | syl2anc 693 |
. 2
  SubGrp                                                             |
| 68 | 55, 57, 67 | 3eqtr4d 2666 |
1
  SubGrp         |