MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind-raph Structured version   Visualization version   Unicode version

Theorem nn0ind-raph 11477
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
nn0ind-raph.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nn0ind-raph.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nn0ind-raph.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nn0ind-raph.5  |-  ps
nn0ind-raph.6  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
Assertion
Ref Expression
nn0ind-raph  |-  ( A  e.  NN0  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nn0ind-raph
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 dfsbcq2 3438 . . . 4  |-  ( z  =  1  ->  ( [ z  /  x ] ph  <->  [. 1  /  x ]. ph ) )
3 nfv 1843 . . . . 5  |-  F/ x ch
4 nn0ind-raph.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
53, 4sbhypf 3253 . . . 4  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ch ) )
6 nfv 1843 . . . . 5  |-  F/ x th
7 nn0ind-raph.3 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
86, 7sbhypf 3253 . . . 4  |-  ( z  =  ( y  +  1 )  ->  ( [ z  /  x ] ph  <->  th ) )
9 nfv 1843 . . . . 5  |-  F/ x ta
10 nn0ind-raph.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
119, 10sbhypf 3253 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  ta ) )
12 nfsbc1v 3455 . . . . 5  |-  F/ x [. 1  /  x ]. ph
13 1ex 10035 . . . . 5  |-  1  e.  _V
14 c0ex 10034 . . . . . . 7  |-  0  e.  _V
15 0nn0 11307 . . . . . . . . . . . 12  |-  0  e.  NN0
16 eleq1a 2696 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  ( y  =  0  ->  y  e.  NN0 ) )
1715, 16ax-mp 5 . . . . . . . . . . 11  |-  ( y  =  0  ->  y  e.  NN0 )
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15  |-  ps
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2018, 19mpbiri 248 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ph )
21 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2221, 4syl6bir 244 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  (
x  =  0  -> 
( ph  <->  ch ) ) )
2322pm5.74d 262 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  (
( x  =  0  ->  ph )  <->  ( x  =  0  ->  ch ) ) )
2420, 23mpbii 223 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  0  ->  ch ) )
2524com12 32 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
y  =  0  ->  ch ) )
2614, 25vtocle 3282 . . . . . . . . . . 11  |-  ( y  =  0  ->  ch )
27 nn0ind-raph.6 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
2817, 26, 27sylc 65 . . . . . . . . . 10  |-  ( y  =  0  ->  th )
2928adantr 481 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  th )
30 oveq1 6657 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
y  +  1 )  =  ( 0  +  1 ) )
31 0p1e1 11132 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
3230, 31syl6eq 2672 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
y  +  1 )  =  1 )
3332eqeq2d 2632 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
x  =  ( y  +  1 )  <->  x  = 
1 ) )
3433, 7syl6bir 244 . . . . . . . . . 10  |-  ( y  =  0  ->  (
x  =  1  -> 
( ph  <->  th ) ) )
3534imp 445 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  ( ph  <->  th )
)
3629, 35mpbird 247 . . . . . . . 8  |-  ( ( y  =  0  /\  x  =  1 )  ->  ph )
3736ex 450 . . . . . . 7  |-  ( y  =  0  ->  (
x  =  1  ->  ph ) )
3814, 37vtocle 3282 . . . . . 6  |-  ( x  =  1  ->  ph )
39 sbceq1a 3446 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<-> 
[. 1  /  x ]. ph ) )
4038, 39mpbid 222 . . . . 5  |-  ( x  =  1  ->  [. 1  /  x ]. ph )
4112, 13, 40vtoclef 3281 . . . 4  |-  [. 1  /  x ]. ph
42 nnnn0 11299 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN0 )
4342, 27syl 17 . . . 4  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
442, 5, 8, 11, 41, 43nnind 11038 . . 3  |-  ( A  e.  NN  ->  ta )
45 nfv 1843 . . . . 5  |-  F/ x
( 0  =  A  ->  ta )
46 eqeq1 2626 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  <->  0  =  A ) )
4719bicomd 213 . . . . . . . . 9  |-  ( x  =  0  ->  ( ps 
<-> 
ph ) )
4847, 10sylan9bb 736 . . . . . . . 8  |-  ( ( x  =  0  /\  x  =  A )  ->  ( ps  <->  ta )
)
4918, 48mpbii 223 . . . . . . 7  |-  ( ( x  =  0  /\  x  =  A )  ->  ta )
5049ex 450 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  ->  ta ) )
5146, 50sylbird 250 . . . . 5  |-  ( x  =  0  ->  (
0  =  A  ->  ta ) )
5245, 14, 51vtoclef 3281 . . . 4  |-  ( 0  =  A  ->  ta )
5352eqcoms 2630 . . 3  |-  ( A  =  0  ->  ta )
5444, 53jaoi 394 . 2  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ta )
551, 54sylbi 207 1  |-  ( A  e.  NN0  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   [wsb 1880    e. wcel 1990   [.wsbc 3435  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-n0 11293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator