MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2foalem Structured version   Visualization version   Unicode version

Theorem numclwlk1lem2foalem 27222
Description: Lemma for numclwlk1lem2foa 27224. (Contributed by AV, 29-May-2021.)
Assertion
Ref Expression
numclwlk1lem2foalem  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  =  W  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )

Proof of Theorem numclwlk1lem2foalem
StepHypRef Expression
1 simpl 473 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  - 
2 ) )  ->  W  e. Word  V )
2 s1cl 13382 . . . . . . . 8  |-  ( X  e.  V  ->  <" X ">  e. Word  V )
3 s1cl 13382 . . . . . . . 8  |-  ( Y  e.  V  ->  <" Y ">  e. Word  V )
41, 2, 33anim123i 1247 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  X  e.  V  /\  Y  e.  V
)  ->  ( W  e. Word  V  /\  <" X ">  e. Word  V  /\  <" Y ">  e. Word  V ) )
543expb 1266 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( W  e. Word  V  /\  <" X ">  e. Word  V  /\  <" Y ">  e. Word  V ) )
6 ccatass 13371 . . . . . 6  |-  ( ( W  e. Word  V  /\  <" X ">  e. Word  V  /\  <" Y ">  e. Word  V )  ->  ( ( W ++  <" X "> ) ++  <" Y "> )  =  ( W ++  ( <" X "> ++  <" Y "> ) ) )
75, 6syl 17 . . . . 5  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( ( W ++  <" X "> ) ++  <" Y "> )  =  ( W ++  ( <" X "> ++  <" Y "> ) ) )
87oveq1d 6665 . . . 4  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  =  ( ( W ++  ( <" X "> ++  <" Y "> ) ) substr  <. 0 ,  ( N  -  2 ) >. ) )
91adantr 481 . . . . 5  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  ->  W  e. Word  V )
10 ccat2s1cl 13397 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( <" X "> ++  <" Y "> )  e. Word  V )
1110adantl 482 . . . . 5  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( <" X "> ++  <" Y "> )  e. Word  V )
12 simpr 477 . . . . . . 7  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  - 
2 ) )  -> 
( # `  W )  =  ( N  - 
2 ) )
1312eqcomd 2628 . . . . . 6  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  - 
2 ) )  -> 
( N  -  2 )  =  ( # `  W ) )
1413adantr 481 . . . . 5  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( N  -  2 )  =  ( # `  W ) )
15 swrdccatid 13497 . . . . 5  |-  ( ( W  e. Word  V  /\  ( <" X "> ++  <" Y "> )  e. Word  V  /\  ( N  -  2
)  =  ( # `  W ) )  -> 
( ( W ++  ( <" X "> ++  <" Y "> ) ) substr  <. 0 ,  ( N  -  2 ) >. )  =  W )
169, 11, 14, 15syl3anc 1326 . . . 4  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( ( W ++  ( <" X "> ++  <" Y "> ) ) substr  <. 0 ,  ( N  -  2 ) >. )  =  W )
178, 16eqtrd 2656 . . 3  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  =  W )
18173adant3 1081 . 2  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  =  W )
19 1e2m1 11136 . . . . . . 7  |-  1  =  ( 2  -  1 )
2019oveq2i 6661 . . . . . 6  |-  ( N  -  1 )  =  ( N  -  (
2  -  1 ) )
21 eluzelcn 11699 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  CC )
22 2cnd 11093 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  3
)  ->  2  e.  CC )
23 1cnd 10056 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  3
)  ->  1  e.  CC )
2421, 22, 23subsubd 10420 . . . . . 6  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  ( 2  -  1 ) )  =  ( ( N  - 
2 )  +  1 ) )
2520, 24syl5eq 2668 . . . . 5  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  1 )  =  ( ( N  - 
2 )  +  1 ) )
26253ad2ant3 1084 . . . 4  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( N  -  1 )  =  ( ( N  - 
2 )  +  1 ) )
2726fveq2d 6195 . . 3  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  (
( N  -  2 )  +  1 ) ) )
28 ccatw2s1p2 13414 . . . 4  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( ( N  -  2 )  +  1 ) )  =  Y )
29283adant3 1081 . . 3  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> ) `  (
( N  -  2 )  +  1 ) )  =  Y )
3027, 29eqtrd 2656 . 2  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y )
31 ccatw2s1p1 13413 . . 3  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V ) )  -> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X )
32313adant3 1081 . 2  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X )
3318, 30, 323jca 1242 1  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  =  W  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   2c2 11070   3c3 11071   ZZ>=cuz 11687   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  numclwlk1lem2foa  27224
  Copyright terms: Public domain W3C validator