MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2foa Structured version   Visualization version   Unicode version

Theorem numclwlk1lem2foa 27224
Description: Going forth and back form the end of a (closed) walk:  W represents the closed walk p0, ..., pn-3, p0. With  X = p0 and  Y = pn-1,  ( ( W ++  <" X "> ) ++  <" Y "> ) represents the closed walk p0, ..., pn-3, p0, pn-1, p0. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 30-Jun-2022.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
Assertion
Ref Expression
numclwlk1lem2foa  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( ( W  e.  ( X F ( N  - 
2 ) )  /\  Y  e.  ( G NeighbVtx  X ) )  ->  (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( X C N ) ) )
Distinct variable groups:    n, G, v, w    n, N, v, w    n, V, v, w    n, X, v, w    w, F    w, W    w, Y
Allowed substitution hints:    C( w, v, n)    F( v, n)    W( v, n)    Y( v, n)

Proof of Theorem numclwlk1lem2foa
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  G  e. USGraph  )
2 uz3m2nn 11731 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  NN )
323ad2ant3 1084 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( N  -  2 )  e.  NN )
4 simp2 1062 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  X  e.  V )
5 extwwlkfab.f . . . . . . . . . . 11  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
6 extwwlkfab.v . . . . . . . . . . 11  |-  V  =  (Vtx `  G )
7 eqid 2622 . . . . . . . . . . 11  |-  (Edg `  G )  =  (Edg
`  G )
85, 6, 7numclwwlkovfel2 27216 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  ( N  -  2 )  e.  NN  /\  X  e.  V )  ->  ( W  e.  ( X F ( N  - 
2 ) )  <->  ( ( W  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  ( N  -  2 )  /\  ( W `  0 )  =  X ) ) )
91, 3, 4, 8syl3anc 1326 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( W  e.  ( X F ( N  -  2 ) )  <->  ( ( W  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  ( N  -  2 )  /\  ( W `  0 )  =  X ) ) )
105, 6, 7numclwwlkovf2ex 27219 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  Y  e.  ( G NeighbVtx  X )  /\  W  e.  ( X F ( N  - 
2 ) ) )  ->  ( ( W ++ 
<" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G ) )
1110ad4ant134 1296 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G ) )
12 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  ( W  e. Word  V  /\  ( # `  W )  =  ( N  -  2 ) ) )
13 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e. USGraph  /\  X  e.  V )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  X  e.  V )
146nbgrisvtx 26255 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G  e. USGraph  /\  Y  e.  ( G NeighbVtx  X )
)  ->  Y  e.  V )
1514adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e. USGraph  /\  X  e.  V )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  Y  e.  V )
1613, 15jca 554 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e. USGraph  /\  X  e.  V )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  ( X  e.  V  /\  Y  e.  V ) )
1716ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( X  e.  V  /\  Y  e.  V ) ) )
18173adant3 1081 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( X  e.  V  /\  Y  e.  V
) ) )
1918adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( W  e. Word  V  /\  ( # `  W )  =  ( N  -  2 ) ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( X  e.  V  /\  Y  e.  V ) ) )
2019imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  ( X  e.  V  /\  Y  e.  V ) )
21 simpll3 1102 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  N  e.  ( ZZ>= `  3 )
)
2212, 20, 213jca 1242 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  ( ( W  e. Word  V  /\  ( # `
 W )  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>=
`  3 ) ) )
2322adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( ( W  e. Word  V  /\  ( # `
 W )  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>=
`  3 ) ) )
24 numclwlk1lem2foalem 27222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  Y  e.  V )  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  =  W  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )
2523, 24syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  =  W  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )
26 eleq1a 2696 . . . . . . . . . . . . . . . . . 18  |-  ( W  e.  ( X F ( N  -  2 ) )  ->  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  =  W  ->  ( ( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) ) ) )
2726adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  =  W  ->  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) ) ) )
28 eleq1a 2696 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e.  ( G NeighbVtx  X )  ->  ( ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  -> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) ) )
2928adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  ->  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) ) )
3029adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  ->  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) ) )
31 idd 24 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X  ->  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )
3227, 30, 313anim123d 1406 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  =  W  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  =  Y  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X )  -> 
( ( ( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) )
3325, 32mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) )  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )
3411, 33jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  ( W  e. Word  V  /\  ( # `  W
)  =  ( N  -  2 ) ) )  /\  Y  e.  ( G NeighbVtx  X )
)  /\  W  e.  ( X F ( N  -  2 ) ) )  ->  ( (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) )
3534exp31 630 . . . . . . . . . . . . 13  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( W  e. Word  V  /\  ( # `  W )  =  ( N  -  2 ) ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( W  e.  ( X F ( N  -  2 ) )  ->  ( (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) )
3635expcom 451 . . . . . . . . . . . 12  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  - 
2 ) )  -> 
( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( W  e.  ( X F ( N  -  2 ) )  ->  ( ( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) ) )
37363ad2antl1 1223 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  ( N  -  2 ) )  ->  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( W  e.  ( X F ( N  -  2 ) )  ->  ( ( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) ) )
38373adant3 1081 . . . . . . . . . 10  |-  ( ( ( W  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  ( N  -  2 )  /\  ( W `  0 )  =  X )  -> 
( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( W  e.  ( X F ( N  -  2 ) )  ->  ( ( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) ) )
3938com12 32 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  ( N  -  2 )  /\  ( W `  0 )  =  X )  -> 
( Y  e.  ( G NeighbVtx  X )  ->  ( W  e.  ( X F ( N  - 
2 ) )  -> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) ) )
409, 39sylbid 230 . . . . . . . 8  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( W  e.  ( X F ( N  -  2 ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( W  e.  ( X F ( N  -  2 ) )  ->  ( ( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) ) )
4140com14 96 . . . . . . 7  |-  ( W  e.  ( X F ( N  -  2 ) )  ->  ( W  e.  ( X F ( N  - 
2 ) )  -> 
( Y  e.  ( G NeighbVtx  X )  ->  (
( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) ) )
4241pm2.43i 52 . . . . . 6  |-  ( W  e.  ( X F ( N  -  2 ) )  ->  ( Y  e.  ( G NeighbVtx  X )  ->  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) ) )
4342imp 445 . . . . 5  |-  ( ( W  e.  ( X F ( N  - 
2 ) )  /\  Y  e.  ( G NeighbVtx  X ) )  ->  (
( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) ) )
4443impcom 446 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( W  e.  ( X F ( N  -  2 ) )  /\  Y  e.  ( G NeighbVtx  X )
) )  ->  (
( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  ( ( ( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) )  /\  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) )
45 oveq1 6657 . . . . . . 7  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( w substr  <. 0 ,  ( N  -  2 ) >.
)  =  ( ( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. ) )
4645eleq1d 2686 . . . . . 6  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( ( w substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) )  <->  ( (
( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) ) ) )
47 fveq1 6190 . . . . . . 7  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( w `
 ( N  - 
1 ) )  =  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) ) )
4847eleq1d 2686 . . . . . 6  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( ( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  <-> 
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) ) )
49 fveq1 6190 . . . . . . 7  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( w `
 ( N  - 
2 ) )  =  ( ( ( W ++ 
<" X "> ) ++  <" Y "> ) `  ( N  -  2 ) ) )
5049eqeq1d 2624 . . . . . 6  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( ( w `  ( N  -  2 ) )  =  X  <->  ( (
( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) )
5146, 48, 503anbi123d 1399 . . . . 5  |-  ( w  =  ( ( W ++ 
<" X "> ) ++  <" Y "> )  ->  ( ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X )  <-> 
( ( ( ( W ++  <" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) )
5251elrab 3363 . . . 4  |-  ( ( ( W ++  <" X "> ) ++  <" Y "> )  e.  {
w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) }  <->  ( ( ( W ++  <" X "> ) ++  <" Y "> )  e.  ( N ClWWalksN  G )  /\  (
( ( ( W ++ 
<" X "> ) ++  <" Y "> ) substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( ( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
( ( W ++  <" X "> ) ++  <" Y "> ) `  ( N  -  2 ) )  =  X ) ) )
5344, 52sylibr 224 . . 3  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( W  e.  ( X F ( N  -  2 ) )  /\  Y  e.  ( G NeighbVtx  X )
) )  ->  (
( W ++  <" X "> ) ++  <" Y "> )  e.  {
w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
54 extwwlkfab.c . . . . 5  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
556, 5, 54extwwlkfab 27223 . . . 4  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( X C N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
5655adantr 481 . . 3  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( W  e.  ( X F ( N  -  2 ) )  /\  Y  e.  ( G NeighbVtx  X )
) )  ->  ( X C N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
5753, 56eleqtrrd 2704 . 2  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( W  e.  ( X F ( N  -  2 ) )  /\  Y  e.  ( G NeighbVtx  X )
) )  ->  (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( X C N ) )
5857ex 450 1  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( ( W  e.  ( X F ( N  - 
2 ) )  /\  Y  e.  ( G NeighbVtx  X ) )  ->  (
( W ++  <" X "> ) ++  <" Y "> )  e.  ( X C N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   {cpr 4179   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   ZZ>=cuz 11687  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   NeighbVtx cnbgr 26224   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk1lem2fo  27228
  Copyright terms: Public domain W3C validator