MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovf2 Structured version   Visualization version   Unicode version

Theorem numclwwlkovf2 27217
Description: Value of operation  F for argument 2. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 28-May-2021.)
Hypotheses
Ref Expression
numclwwlkovf.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
numclwwlkffin.v  |-  V  =  (Vtx `  G )
numclwwlkovfel2.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
numclwwlkovf2  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  ( X F 2 )  =  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  E  /\  ( w `  0
)  =  X ) } )
Distinct variable groups:    n, G, v, w    n, V, v   
n, X, v, w   
w, V
Allowed substitution hints:    E( w, v, n)    F( w, v, n)

Proof of Theorem numclwwlkovf2
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  X  e.  V )
2 2nn 11185 . . 3  |-  2  e.  NN
3 numclwwlkovf.f . . . 4  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
43numclwwlkovf 27213 . . 3  |-  ( ( X  e.  V  /\  2  e.  NN )  ->  ( X F 2 )  =  { w  e.  ( 2 ClWWalksN  G )  |  ( w ` 
0 )  =  X } )
51, 2, 4sylancl 694 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  ( X F 2 )  =  { w  e.  ( 2 ClWWalksN  G )  |  ( w `  0 )  =  X } )
6 clwwlksn2 26910 . . . . . 6  |-  ( w  e.  ( 2 ClWWalksN  G
)  <->  ( ( # `  w )  =  2  /\  w  e. Word  (Vtx `  G )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) ) )
76anbi1i 731 . . . . 5  |-  ( ( w  e.  ( 2 ClWWalksN  G )  /\  (
w `  0 )  =  X )  <->  ( (
( # `  w )  =  2  /\  w  e. Word  (Vtx `  G )  /\  { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G ) )  /\  ( w `  0
)  =  X ) )
87a1i 11 . . . 4  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  (
( w  e.  ( 2 ClWWalksN  G )  /\  (
w `  0 )  =  X )  <->  ( (
( # `  w )  =  2  /\  w  e. Word  (Vtx `  G )  /\  { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G ) )  /\  ( w `  0
)  =  X ) ) )
9 anass 681 . . . . 5  |-  ( ( ( w  e. Word  V  /\  ( ( # `  w
)  =  2  /\ 
{ ( w ` 
0 ) ,  ( w `  1 ) }  e.  E ) )  /\  ( w `
 0 )  =  X )  <->  ( w  e. Word  V  /\  ( ( ( # `  w
)  =  2  /\ 
{ ( w ` 
0 ) ,  ( w `  1 ) }  e.  E )  /\  ( w ` 
0 )  =  X ) ) )
10 df-3an 1039 . . . . . . . 8  |-  ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  <->  ( (
( # `  w )  =  2  /\  w  e. Word  (Vtx `  G )
)  /\  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
11 ancom 466 . . . . . . . . . 10  |-  ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G ) )  <->  ( w  e. Word  (Vtx `  G )  /\  ( # `  w
)  =  2 ) )
12 numclwwlkffin.v . . . . . . . . . . . . . 14  |-  V  =  (Vtx `  G )
1312eqcomi 2631 . . . . . . . . . . . . 13  |-  (Vtx `  G )  =  V
1413wrdeqi 13328 . . . . . . . . . . . 12  |- Word  (Vtx `  G )  = Word  V
1514eleq2i 2693 . . . . . . . . . . 11  |-  ( w  e. Word  (Vtx `  G
)  <->  w  e. Word  V )
1615anbi1i 731 . . . . . . . . . 10  |-  ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  2 )  <->  ( w  e. Word  V  /\  ( # `  w )  =  2 ) )
1711, 16bitri 264 . . . . . . . . 9  |-  ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G ) )  <->  ( w  e. Word  V  /\  ( # `  w )  =  2 ) )
18 numclwwlkovfel2.e . . . . . . . . . . 11  |-  E  =  (Edg `  G )
1918eqcomi 2631 . . . . . . . . . 10  |-  (Edg `  G )  =  E
2019eleq2i 2693 . . . . . . . . 9  |-  ( { ( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
)  <->  { ( w ` 
0 ) ,  ( w `  1 ) }  e.  E )
2117, 20anbi12i 733 . . . . . . . 8  |-  ( ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G ) )  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  <->  ( (
w  e. Word  V  /\  ( # `  w )  =  2 )  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  E ) )
2210, 21bitri 264 . . . . . . 7  |-  ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  <->  ( (
w  e. Word  V  /\  ( # `  w )  =  2 )  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  E ) )
23 anass 681 . . . . . . 7  |-  ( ( ( w  e. Word  V  /\  ( # `  w
)  =  2 )  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  E
)  <->  ( w  e. Word  V  /\  ( ( # `  w )  =  2  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  E
) ) )
2422, 23bitri 264 . . . . . 6  |-  ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  <->  ( w  e. Word  V  /\  ( (
# `  w )  =  2  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  E ) ) )
2524anbi1i 731 . . . . 5  |-  ( ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  /\  (
w `  0 )  =  X )  <->  ( (
w  e. Word  V  /\  ( ( # `  w
)  =  2  /\ 
{ ( w ` 
0 ) ,  ( w `  1 ) }  e.  E ) )  /\  ( w `
 0 )  =  X ) )
26 df-3an 1039 . . . . . 6  |-  ( ( ( # `  w
)  =  2  /\ 
{ ( w ` 
0 ) ,  ( w `  1 ) }  e.  E  /\  ( w `  0
)  =  X )  <-> 
( ( ( # `  w )  =  2  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  E
)  /\  ( w `  0 )  =  X ) )
2726anbi2i 730 . . . . 5  |-  ( ( w  e. Word  V  /\  ( ( # `  w
)  =  2  /\ 
{ ( w ` 
0 ) ,  ( w `  1 ) }  e.  E  /\  ( w `  0
)  =  X ) )  <->  ( w  e. Word  V  /\  ( ( (
# `  w )  =  2  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  E )  /\  ( w `  0
)  =  X ) ) )
289, 25, 273bitr4i 292 . . . 4  |-  ( ( ( ( # `  w
)  =  2  /\  w  e. Word  (Vtx `  G )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  /\  (
w `  0 )  =  X )  <->  ( w  e. Word  V  /\  ( (
# `  w )  =  2  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  E  /\  (
w `  0 )  =  X ) ) )
298, 28syl6bb 276 . . 3  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  (
( w  e.  ( 2 ClWWalksN  G )  /\  (
w `  0 )  =  X )  <->  ( w  e. Word  V  /\  ( (
# `  w )  =  2  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  E  /\  (
w `  0 )  =  X ) ) ) )
3029rabbidva2 3186 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  { w  e.  ( 2 ClWWalksN  G )  |  ( w ` 
0 )  =  X }  =  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  E  /\  (
w `  0 )  =  X ) } )
315, 30eqtrd 2656 1  |-  ( ( G  e. USGraph  /\  X  e.  V )  ->  ( X F 2 )  =  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  E  /\  ( w `  0
)  =  X ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   NNcn 11020   2c2 11070   #chash 13117  Word cword 13291  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlkovf2num  27218
  Copyright terms: Public domain W3C validator