MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksn2 Structured version   Visualization version   Unicode version

Theorem clwwlksn2 26910
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Assertion
Ref Expression
clwwlksn2  |-  ( W  e.  ( 2 ClWWalksN  G
)  <->  ( ( # `  W )  =  2  /\  W  e. Word  (Vtx `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) ) )

Proof of Theorem clwwlksn2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 2nn 11185 . . 3  |-  2  e.  NN
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (Edg `  G )  =  (Edg
`  G )
42, 3isclwwlksnx 26889 . . 3  |-  ( 2  e.  NN  ->  ( W  e.  ( 2 ClWWalksN  G )  <->  ( ( W  e. Word  (Vtx `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) )  /\  ( # `  W
)  =  2 ) ) )
51, 4ax-mp 5 . 2  |-  ( W  e.  ( 2 ClWWalksN  G
)  <->  ( ( W  e. Word  (Vtx `  G
)  /\  A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) )  /\  ( # `  W
)  =  2 ) )
6 3anass 1042 . . . 4  |-  ( ( W  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  <-> 
( W  e. Word  (Vtx `  G )  /\  ( A. i  e.  (
0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) ) ) )
7 oveq1 6657 . . . . . . . . . . . . 13  |-  ( (
# `  W )  =  2  ->  (
( # `  W )  -  1 )  =  ( 2  -  1 ) )
8 2m1e1 11135 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
97, 8syl6eq 2672 . . . . . . . . . . . 12  |-  ( (
# `  W )  =  2  ->  (
( # `  W )  -  1 )  =  1 )
109oveq2d 6666 . . . . . . . . . . 11  |-  ( (
# `  W )  =  2  ->  (
0..^ ( ( # `  W )  -  1 ) )  =  ( 0..^ 1 ) )
11 fzo01 12550 . . . . . . . . . . 11  |-  ( 0..^ 1 )  =  {
0 }
1210, 11syl6eq 2672 . . . . . . . . . 10  |-  ( (
# `  W )  =  2  ->  (
0..^ ( ( # `  W )  -  1 ) )  =  {
0 } )
1312adantr 481 . . . . . . . . 9  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( 0..^ ( (
# `  W )  -  1 ) )  =  { 0 } )
1413raleqdv 3144 . . . . . . . 8  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  { 0 }  {
( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
15 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
16 fveq2 6191 . . . . . . . . . . 11  |-  ( i  =  0  ->  ( W `  i )  =  ( W ` 
0 ) )
17 oveq1 6657 . . . . . . . . . . . . 13  |-  ( i  =  0  ->  (
i  +  1 )  =  ( 0  +  1 ) )
18 0p1e1 11132 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
1917, 18syl6eq 2672 . . . . . . . . . . . 12  |-  ( i  =  0  ->  (
i  +  1 )  =  1 )
2019fveq2d 6195 . . . . . . . . . . 11  |-  ( i  =  0  ->  ( W `  ( i  +  1 ) )  =  ( W ` 
1 ) )
2116, 20preq12d 4276 . . . . . . . . . 10  |-  ( i  =  0  ->  { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  =  { ( W ` 
0 ) ,  ( W `  1 ) } )
2221eleq1d 2686 . . . . . . . . 9  |-  ( i  =  0  ->  ( { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { ( W `  0 ) ,  ( W ` 
1 ) }  e.  (Edg `  G ) ) )
2315, 22ralsn 4222 . . . . . . . 8  |-  ( A. i  e.  { 0 }  { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { ( W `  0 ) ,  ( W ` 
1 ) }  e.  (Edg `  G ) )
2414, 23syl6bb 276 . . . . . . 7  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { ( W `  0 ) ,  ( W ` 
1 ) }  e.  (Edg `  G ) ) )
25 prcom 4267 . . . . . . . . 9  |-  { ( lastS  `  W ) ,  ( W `  0 ) }  =  { ( W `  0 ) ,  ( lastS  `  W
) }
26 lsw 13351 . . . . . . . . . . 11  |-  ( W  e. Word  (Vtx `  G
)  ->  ( lastS  `  W
)  =  ( W `
 ( ( # `  W )  -  1 ) ) )
279fveq2d 6195 . . . . . . . . . . 11  |-  ( (
# `  W )  =  2  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  1
) )
2826, 27sylan9eqr 2678 . . . . . . . . . 10  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( lastS  `  W )  =  ( W `  1
) )
2928preq2d 4275 . . . . . . . . 9  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  ->  { ( W ` 
0 ) ,  ( lastS  `  W ) }  =  { ( W ` 
0 ) ,  ( W `  1 ) } )
3025, 29syl5eq 2668 . . . . . . . 8  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  ->  { ( lastS  `  W ) ,  ( W ` 
0 ) }  =  { ( W ` 
0 ) ,  ( W `  1 ) } )
3130eleq1d 2686 . . . . . . 7  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( { ( lastS  `  W
) ,  ( W `
 0 ) }  e.  (Edg `  G
)  <->  { ( W ` 
0 ) ,  ( W `  1 ) }  e.  (Edg `  G ) ) )
3224, 31anbi12d 747 . . . . . 6  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( ( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) )  <-> 
( { ( W `
 0 ) ,  ( W `  1
) }  e.  (Edg
`  G )  /\  { ( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) ) ) )
33 anidm 676 . . . . . 6  |-  ( ( { ( W ` 
0 ) ,  ( W `  1 ) }  e.  (Edg `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) )  <->  { ( W `  0 ) ,  ( W ` 
1 ) }  e.  (Edg `  G ) )
3432, 33syl6bb 276 . . . . 5  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G ) )  -> 
( ( A. i  e.  ( 0..^ ( (
# `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  W ) ,  ( W `  0
) }  e.  (Edg
`  G ) )  <->  { ( W ` 
0 ) ,  ( W `  1 ) }  e.  (Edg `  G ) ) )
3534pm5.32da 673 . . . 4  |-  ( (
# `  W )  =  2  ->  (
( W  e. Word  (Vtx `  G )  /\  ( A. i  e.  (
0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) ) )  <->  ( W  e. Word 
(Vtx `  G )  /\  { ( W ` 
0 ) ,  ( W `  1 ) }  e.  (Edg `  G ) ) ) )
366, 35syl5bb 272 . . 3  |-  ( (
# `  W )  =  2  ->  (
( W  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  <-> 
( W  e. Word  (Vtx `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) ) ) )
3736pm5.32ri 670 . 2  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  W
)  -  1 ) ) { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  W ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  2 )  <-> 
( ( W  e. Word 
(Vtx `  G )  /\  { ( W ` 
0 ) ,  ( W `  1 ) }  e.  (Edg `  G ) )  /\  ( # `  W )  =  2 ) )
38 3anass 1042 . . 3  |-  ( ( ( # `  W
)  =  2  /\  W  e. Word  (Vtx `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) )  <->  ( ( # `
 W )  =  2  /\  ( W  e. Word  (Vtx `  G
)  /\  { ( W `  0 ) ,  ( W ` 
1 ) }  e.  (Edg `  G ) ) ) )
39 ancom 466 . . 3  |-  ( ( ( # `  W
)  =  2  /\  ( W  e. Word  (Vtx `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) ) )  <->  ( ( W  e. Word  (Vtx `  G
)  /\  { ( W `  0 ) ,  ( W ` 
1 ) }  e.  (Edg `  G ) )  /\  ( # `  W
)  =  2 ) )
4038, 39bitr2i 265 . 2  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) )  /\  ( # `
 W )  =  2 )  <->  ( ( # `
 W )  =  2  /\  W  e. Word 
(Vtx `  G )  /\  { ( W ` 
0 ) ,  ( W `  1 ) }  e.  (Edg `  G ) ) )
415, 37, 403bitri 286 1  |-  ( W  e.  ( 2 ClWWalksN  G
)  <->  ( ( # `  W )  =  2  /\  W  e. Word  (Vtx `  G )  /\  {
( W `  0
) ,  ( W `
 1 ) }  e.  (Edg `  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292  Vtxcvtx 25874  Edgcedg 25939   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlkovf2  27217
  Copyright terms: Public domain W3C validator