MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odupos Structured version   Visualization version   Unicode version

Theorem odupos 17135
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d  |-  D  =  (ODual `  O )
Assertion
Ref Expression
odupos  |-  ( O  e.  Poset  ->  D  e.  Poset
)

Proof of Theorem odupos
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . . 4  |-  D  =  (ODual `  O )
2 fvex 6201 . . . 4  |-  (ODual `  O )  e.  _V
31, 2eqeltri 2697 . . 3  |-  D  e. 
_V
43a1i 11 . 2  |-  ( O  e.  Poset  ->  D  e.  _V )
5 eqid 2622 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
61, 5odubas 17133 . . 3  |-  ( Base `  O )  =  (
Base `  D )
76a1i 11 . 2  |-  ( O  e.  Poset  ->  ( Base `  O )  =  (
Base `  D )
)
8 eqid 2622 . . . 4  |-  ( le
`  O )  =  ( le `  O
)
91, 8oduleval 17131 . . 3  |-  `' ( le `  O )  =  ( le `  D )
109a1i 11 . 2  |-  ( O  e.  Poset  ->  `' ( le `  O )  =  ( le `  D
) )
115, 8posref 16951 . . 3  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
) )  ->  a
( le `  O
) a )
12 vex 3203 . . . 4  |-  a  e. 
_V
1312, 12brcnv 5305 . . 3  |-  ( a `' ( le `  O ) a  <->  a ( le `  O ) a )
1411, 13sylibr 224 . 2  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
) )  ->  a `' ( le `  O ) a )
15 vex 3203 . . . . 5  |-  b  e. 
_V
1612, 15brcnv 5305 . . . 4  |-  ( a `' ( le `  O ) b  <->  b ( le `  O ) a )
1715, 12brcnv 5305 . . . 4  |-  ( b `' ( le `  O ) a  <->  a ( le `  O ) b )
1816, 17anbi12ci 734 . . 3  |-  ( ( a `' ( le
`  O ) b  /\  b `' ( le `  O ) a )  <->  ( a
( le `  O
) b  /\  b
( le `  O
) a ) )
195, 8posasymb 16952 . . . 4  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )
)  ->  ( (
a ( le `  O ) b  /\  b ( le `  O ) a )  <-> 
a  =  b ) )
2019biimpd 219 . . 3  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )
)  ->  ( (
a ( le `  O ) b  /\  b ( le `  O ) a )  ->  a  =  b ) )
2118, 20syl5bi 232 . 2  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )
)  ->  ( (
a `' ( le
`  O ) b  /\  b `' ( le `  O ) a )  ->  a  =  b ) )
22 3anrev 1049 . . . 4  |-  ( ( a  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  c  e.  ( Base `  O )
)  <->  ( c  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )  /\  a  e.  ( Base `  O ) ) )
235, 8postr 16953 . . . 4  |-  ( ( O  e.  Poset  /\  (
c  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  a  e.  ( Base `  O )
) )  ->  (
( c ( le
`  O ) b  /\  b ( le
`  O ) a )  ->  c ( le `  O ) a ) )
2422, 23sylan2b 492 . . 3  |-  ( ( O  e.  Poset  /\  (
a  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  c  e.  ( Base `  O )
) )  ->  (
( c ( le
`  O ) b  /\  b ( le
`  O ) a )  ->  c ( le `  O ) a ) )
25 vex 3203 . . . . 5  |-  c  e. 
_V
2615, 25brcnv 5305 . . . 4  |-  ( b `' ( le `  O ) c  <->  c ( le `  O ) b )
2716, 26anbi12ci 734 . . 3  |-  ( ( a `' ( le
`  O ) b  /\  b `' ( le `  O ) c )  <->  ( c
( le `  O
) b  /\  b
( le `  O
) a ) )
2812, 25brcnv 5305 . . 3  |-  ( a `' ( le `  O ) c  <->  c ( le `  O ) a )
2924, 27, 283imtr4g 285 . 2  |-  ( ( O  e.  Poset  /\  (
a  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  c  e.  ( Base `  O )
) )  ->  (
( a `' ( le `  O ) b  /\  b `' ( le `  O
) c )  -> 
a `' ( le
`  O ) c ) )
304, 7, 10, 14, 21, 29isposd 16955 1  |-  ( O  e.  Poset  ->  D  e.  Poset
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   `'ccnv 5113   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940  ODualcodu 17128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ple 15961  df-preset 16928  df-poset 16946  df-odu 17129
This theorem is referenced by:  oduposb  17136  posglbd  17150  odutos  29663
  Copyright terms: Public domain W3C validator