MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odval Structured version   Visualization version   Unicode version

Theorem odval 17953
Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1  |-  X  =  ( Base `  G
)
odval.2  |-  .x.  =  (.g
`  G )
odval.3  |-  .0.  =  ( 0g `  G )
odval.4  |-  O  =  ( od `  G
)
odval.i  |-  I  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}
Assertion
Ref Expression
odval  |-  ( A  e.  X  ->  ( O `  A )  =  if ( I  =  (/) ,  0 , inf (
I ,  RR ,  <  ) ) )
Distinct variable groups:    y, A    y, G    y,  .x.    y,  .0.
Allowed substitution hints:    I( y)    O( y)    X( y)

Proof of Theorem odval
Dummy variables  i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7  |-  ( x  =  A  ->  (
y  .x.  x )  =  ( y  .x.  A ) )
21eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( y  .x.  x
)  =  .0.  <->  ( y  .x.  A )  =  .0.  ) )
32rabbidv 3189 . . . . 5  |-  ( x  =  A  ->  { y  e.  NN  |  ( y  .x.  x )  =  .0.  }  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
} )
4 odval.i . . . . 5  |-  I  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}
53, 4syl6eqr 2674 . . . 4  |-  ( x  =  A  ->  { y  e.  NN  |  ( y  .x.  x )  =  .0.  }  =  I )
65csbeq1d 3540 . . 3  |-  ( x  =  A  ->  [_ {
y  e.  NN  | 
( y  .x.  x
)  =  .0.  }  /  i ]_ if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) )  =  [_ I  /  i ]_ if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) ) )
7 nnex 11026 . . . . 5  |-  NN  e.  _V
84, 7rabex2 4815 . . . 4  |-  I  e. 
_V
9 eqeq1 2626 . . . . 5  |-  ( i  =  I  ->  (
i  =  (/)  <->  I  =  (/) ) )
10 infeq1 8382 . . . . 5  |-  ( i  =  I  -> inf ( i ,  RR ,  <  )  = inf ( I ,  RR ,  <  )
)
119, 10ifbieq2d 4111 . . . 4  |-  ( i  =  I  ->  if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) )  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
) )
128, 11csbie 3559 . . 3  |-  [_ I  /  i ]_ if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) )  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
)
136, 12syl6eq 2672 . 2  |-  ( x  =  A  ->  [_ {
y  e.  NN  | 
( y  .x.  x
)  =  .0.  }  /  i ]_ if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) )  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
) )
14 odval.1 . . 3  |-  X  =  ( Base `  G
)
15 odval.2 . . 3  |-  .x.  =  (.g
`  G )
16 odval.3 . . 3  |-  .0.  =  ( 0g `  G )
17 odval.4 . . 3  |-  O  =  ( od `  G
)
1814, 15, 16, 17odfval 17952 . 2  |-  O  =  ( x  e.  X  |-> 
[_ { y  e.  NN  |  ( y 
.x.  x )  =  .0.  }  /  i ]_ if ( i  =  (/) ,  0 , inf (
i ,  RR ,  <  ) ) )
19 c0ex 10034 . . 3  |-  0  e.  _V
20 ltso 10118 . . . 4  |-  <  Or  RR
2120infex 8399 . . 3  |- inf ( I ,  RR ,  <  )  e.  _V
2219, 21ifex 4156 . 2  |-  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
)  e.  _V
2313, 18, 22fvmpt 6282 1  |-  ( A  e.  X  ->  ( O `  A )  =  if ( I  =  (/) ,  0 , inf (
I ,  RR ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   [_csb 3533   (/)c0 3915   ifcif 4086   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936    < clt 10074   NNcn 11020   Basecbs 15857   0gc0g 16100  .gcmg 17540   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-od 17948
This theorem is referenced by:  odlem1  17954  odlem2  17958  submod  17984  ofldchr  29814
  Copyright terms: Public domain W3C validator