MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem1 Structured version   Visualization version   Unicode version

Theorem odlem1 17954
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1  |-  X  =  ( Base `  G
)
odval.2  |-  .x.  =  (.g
`  G )
odval.3  |-  .0.  =  ( 0g `  G )
odval.4  |-  O  =  ( od `  G
)
odval.i  |-  I  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}
Assertion
Ref Expression
odlem1  |-  ( A  e.  X  ->  (
( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I
) )
Distinct variable groups:    y, A    y, G    y,  .x.    y,  .0.
Allowed substitution hints:    I( y)    O( y)    X( y)

Proof of Theorem odlem1
StepHypRef Expression
1 odval.1 . . 3  |-  X  =  ( Base `  G
)
2 odval.2 . . 3  |-  .x.  =  (.g
`  G )
3 odval.3 . . 3  |-  .0.  =  ( 0g `  G )
4 odval.4 . . 3  |-  O  =  ( od `  G
)
5 odval.i . . 3  |-  I  =  { y  e.  NN  |  ( y  .x.  A )  =  .0. 
}
61, 2, 3, 4, 5odval 17953 . 2  |-  ( A  e.  X  ->  ( O `  A )  =  if ( I  =  (/) ,  0 , inf (
I ,  RR ,  <  ) ) )
7 eqeq2 2633 . . . 4  |-  ( 0  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  ) )  -> 
( ( O `  A )  =  0  <-> 
( O `  A
)  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
) ) )
87imbi1d 331 . . 3  |-  ( 0  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  ) )  -> 
( ( ( O `
 A )  =  0  ->  ( (
( O `  A
)  =  0  /\  I  =  (/) )  \/  ( O `  A
)  e.  I ) )  <->  ( ( O `
 A )  =  if ( I  =  (/) ,  0 , inf (
I ,  RR ,  <  ) )  ->  (
( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I
) ) ) )
9 eqeq2 2633 . . . 4  |-  (inf ( I ,  RR ,  <  )  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
)  ->  ( ( O `  A )  = inf ( I ,  RR ,  <  )  <->  ( O `  A )  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  ) ) ) )
109imbi1d 331 . . 3  |-  (inf ( I ,  RR ,  <  )  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
)  ->  ( (
( O `  A
)  = inf ( I ,  RR ,  <  )  ->  ( ( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I ) )  <->  ( ( O `  A )  =  if ( I  =  (/) ,  0 , inf (
I ,  RR ,  <  ) )  ->  (
( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I
) ) ) )
11 orc 400 . . . . 5  |-  ( ( ( O `  A
)  =  0  /\  I  =  (/) )  -> 
( ( ( O `
 A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I ) )
1211expcom 451 . . . 4  |-  ( I  =  (/)  ->  ( ( O `  A )  =  0  ->  (
( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I
) ) )
1312adantl 482 . . 3  |-  ( ( A  e.  X  /\  I  =  (/) )  -> 
( ( O `  A )  =  0  ->  ( ( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I ) ) )
14 ssrab2 3687 . . . . . . 7  |-  { y  e.  NN  |  ( y  .x.  A )  =  .0.  }  C_  NN
15 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
1615eqcomi 2631 . . . . . . 7  |-  ( ZZ>= ` 
1 )  =  NN
1714, 5, 163sstr4i 3644 . . . . . 6  |-  I  C_  ( ZZ>= `  1 )
18 df-ne 2795 . . . . . . . 8  |-  ( I  =/=  (/)  <->  -.  I  =  (/) )
1918biimpri 218 . . . . . . 7  |-  ( -.  I  =  (/)  ->  I  =/=  (/) )
2019adantl 482 . . . . . 6  |-  ( ( A  e.  X  /\  -.  I  =  (/) )  ->  I  =/=  (/) )
21 infssuzcl 11772 . . . . . 6  |-  ( ( I  C_  ( ZZ>= ` 
1 )  /\  I  =/=  (/) )  -> inf ( I ,  RR ,  <  )  e.  I )
2217, 20, 21sylancr 695 . . . . 5  |-  ( ( A  e.  X  /\  -.  I  =  (/) )  -> inf ( I ,  RR ,  <  )  e.  I
)
23 eleq1a 2696 . . . . 5  |-  (inf ( I ,  RR ,  <  )  e.  I  -> 
( ( O `  A )  = inf (
I ,  RR ,  <  )  ->  ( O `  A )  e.  I
) )
2422, 23syl 17 . . . 4  |-  ( ( A  e.  X  /\  -.  I  =  (/) )  -> 
( ( O `  A )  = inf (
I ,  RR ,  <  )  ->  ( O `  A )  e.  I
) )
25 olc 399 . . . 4  |-  ( ( O `  A )  e.  I  ->  (
( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I
) )
2624, 25syl6 35 . . 3  |-  ( ( A  e.  X  /\  -.  I  =  (/) )  -> 
( ( O `  A )  = inf (
I ,  RR ,  <  )  ->  ( (
( O `  A
)  =  0  /\  I  =  (/) )  \/  ( O `  A
)  e.  I ) ) )
278, 10, 13, 26ifbothda 4123 . 2  |-  ( A  e.  X  ->  (
( O `  A
)  =  if ( I  =  (/) ,  0 , inf ( I ,  RR ,  <  )
)  ->  ( (
( O `  A
)  =  0  /\  I  =  (/) )  \/  ( O `  A
)  e.  I ) ) )
286, 27mpd 15 1  |-  ( A  e.  X  ->  (
( ( O `  A )  =  0  /\  I  =  (/) )  \/  ( O `  A )  e.  I
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074   NNcn 11020   ZZ>=cuz 11687   Basecbs 15857   0gc0g 16100  .gcmg 17540   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-od 17948
This theorem is referenced by:  odcl  17955  odid  17957
  Copyright terms: Public domain W3C validator