MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrle Structured version   Visualization version   Unicode version

Theorem opsrle 19475
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opsrle.s  |-  S  =  ( I mPwSer  R )
opsrle.o  |-  O  =  ( ( I ordPwSer  R
) `  T )
opsrle.b  |-  B  =  ( Base `  S
)
opsrle.q  |-  .<  =  ( lt `  R )
opsrle.c  |-  C  =  ( T  <bag  I )
opsrle.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
opsrle.l  |-  .<_  =  ( le `  O )
opsrle.t  |-  ( ph  ->  T  C_  ( I  X.  I ) )
Assertion
Ref Expression
opsrle  |-  ( ph  -> 
.<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } )
Distinct variable groups:    x, y, B    z, w, D    w, h, x, y, z, I   
w, R, x, y, z    ph, w, x, y, z    w, T, x, y, z
Allowed substitution hints:    ph( h)    B( z, w, h)    C( x, y, z, w, h)    D( x, y, h)    R( h)    S( x, y, z, w, h)    .< ( x, y, z, w, h)    T( h)    .<_ ( x, y, z, w, h)    O( x, y, z, w, h)

Proof of Theorem opsrle
StepHypRef Expression
1 opsrle.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 opsrle.o . . . . 5  |-  O  =  ( ( I ordPwSer  R
) `  T )
3 opsrle.b . . . . 5  |-  B  =  ( Base `  S
)
4 opsrle.q . . . . 5  |-  .<  =  ( lt `  R )
5 opsrle.c . . . . 5  |-  C  =  ( T  <bag  I )
6 opsrle.d . . . . 5  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
7 eqid 2622 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }
8 simprl 794 . . . . 5  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  I  e.  _V )
9 simprr 796 . . . . 5  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  R  e.  _V )
10 opsrle.t . . . . . 6  |-  ( ph  ->  T  C_  ( I  X.  I ) )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  T  C_  ( I  X.  I ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 11opsrval 19474 . . . 4  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  O  =  ( S sSet  <.
( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) )
1312fveq2d 6195 . . 3  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  -> 
( le `  O
)  =  ( le
`  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) ) )
14 opsrle.l . . 3  |-  .<_  =  ( le `  O )
15 ovex 6678 . . . . 5  |-  ( I mPwSer  R )  e.  _V
161, 15eqeltri 2697 . . . 4  |-  S  e. 
_V
17 fvex 6201 . . . . . . 7  |-  ( Base `  S )  e.  _V
183, 17eqeltri 2697 . . . . . 6  |-  B  e. 
_V
1918, 18xpex 6962 . . . . 5  |-  ( B  X.  B )  e. 
_V
20 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
21 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
2220, 21prss 4351 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  <->  { x ,  y } 
C_  B )
2322anbi1i 731 . . . . . . 7  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) )  <->  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) )
2423opabbii 4717 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }
25 opabssxp 5193 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) } 
C_  ( B  X.  B )
2624, 25eqsstr3i 3636 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  C_  ( B  X.  B )
2719, 26ssexi 4803 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  e.  _V
28 pleid 16049 . . . . 5  |-  le  = Slot  ( le `  ndx )
2928setsid 15914 . . . 4  |-  ( ( S  e.  _V  /\  {
<. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( (
x `  z )  .<  ( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  e.  _V )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  ( le
`  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) ) )
3016, 27, 29mp2an 708 . . 3  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  ( le
`  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) )
3113, 14, 303eqtr4g 2681 . 2  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  .<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } )
32 reldmopsr 19473 . . . . . . . . . 10  |-  Rel  dom ordPwSer
3332ovprc 6683 . . . . . . . . 9  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I ordPwSer  R )  =  (/) )
3433adantl 482 . . . . . . . 8  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( I ordPwSer  R )  =  (/) )
3534fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( (
I ordPwSer  R ) `  T
)  =  ( (/) `  T ) )
362, 35syl5eq 2668 . . . . . 6  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  O  =  ( (/) `  T ) )
37 0fv 6227 . . . . . 6  |-  ( (/) `  T )  =  (/)
3836, 37syl6eq 2672 . . . . 5  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  O  =  (/) )
3938fveq2d 6195 . . . 4  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( le `  O )  =  ( le `  (/) ) )
4028str0 15911 . . . 4  |-  (/)  =  ( le `  (/) )
4139, 14, 403eqtr4g 2681 . . 3  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  .<_  =  (/) )
42 reldmpsr 19361 . . . . . . . . . . 11  |-  Rel  dom mPwSer
4342ovprc 6683 . . . . . . . . . 10  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
4443adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( I mPwSer  R )  =  (/) )
451, 44syl5eq 2668 . . . . . . . 8  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  S  =  (/) )
4645fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( Base `  S )  =  (
Base `  (/) ) )
47 base0 15912 . . . . . . 7  |-  (/)  =  (
Base `  (/) )
4846, 3, 473eqtr4g 2681 . . . . . 6  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  B  =  (/) )
4948xpeq2d 5139 . . . . 5  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( B  X.  B )  =  ( B  X.  (/) ) )
50 xp0 5552 . . . . 5  |-  ( B  X.  (/) )  =  (/)
5149, 50syl6eq 2672 . . . 4  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( B  X.  B )  =  (/) )
52 sseq0 3975 . . . 4  |-  ( ( { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  C_  ( B  X.  B )  /\  ( B  X.  B )  =  (/) )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  (/) )
5326, 51, 52sylancr 695 . . 3  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  (/) )
5441, 53eqtr4d 2659 . 2  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  .<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( (
x `  z )  .<  ( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } )
5531, 54pm2.61dan 832 1  |-  ( ph  -> 
.<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {cpr 4179   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   NNcn 11020   NN0cn0 11292   ndxcnx 15854   sSet csts 15855   Basecbs 15857   lecple 15948   ltcplt 16941   mPwSer cmps 19351    <bag cltb 19354   ordPwSer copws 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ple 15961  df-psr 19356  df-opsr 19360
This theorem is referenced by:  opsrval2  19476  opsrtoslem1  19484
  Copyright terms: Public domain W3C validator