| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opsrle | Structured version Visualization version Unicode version | ||
| Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| opsrle.s |
|
| opsrle.o |
|
| opsrle.b |
|
| opsrle.q |
|
| opsrle.c |
|
| opsrle.d |
|
| opsrle.l |
|
| opsrle.t |
|
| Ref | Expression |
|---|---|
| opsrle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrle.s |
. . . . 5
| |
| 2 | opsrle.o |
. . . . 5
| |
| 3 | opsrle.b |
. . . . 5
| |
| 4 | opsrle.q |
. . . . 5
| |
| 5 | opsrle.c |
. . . . 5
| |
| 6 | opsrle.d |
. . . . 5
| |
| 7 | eqid 2622 |
. . . . 5
| |
| 8 | simprl 794 |
. . . . 5
| |
| 9 | simprr 796 |
. . . . 5
| |
| 10 | opsrle.t |
. . . . . 6
| |
| 11 | 10 | adantr 481 |
. . . . 5
|
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 | opsrval 19474 |
. . . 4
|
| 13 | 12 | fveq2d 6195 |
. . 3
|
| 14 | opsrle.l |
. . 3
| |
| 15 | ovex 6678 |
. . . . 5
| |
| 16 | 1, 15 | eqeltri 2697 |
. . . 4
|
| 17 | fvex 6201 |
. . . . . . 7
| |
| 18 | 3, 17 | eqeltri 2697 |
. . . . . 6
|
| 19 | 18, 18 | xpex 6962 |
. . . . 5
|
| 20 | vex 3203 |
. . . . . . . . 9
| |
| 21 | vex 3203 |
. . . . . . . . 9
| |
| 22 | 20, 21 | prss 4351 |
. . . . . . . 8
|
| 23 | 22 | anbi1i 731 |
. . . . . . 7
|
| 24 | 23 | opabbii 4717 |
. . . . . 6
|
| 25 | opabssxp 5193 |
. . . . . 6
| |
| 26 | 24, 25 | eqsstr3i 3636 |
. . . . 5
|
| 27 | 19, 26 | ssexi 4803 |
. . . 4
|
| 28 | pleid 16049 |
. . . . 5
| |
| 29 | 28 | setsid 15914 |
. . . 4
|
| 30 | 16, 27, 29 | mp2an 708 |
. . 3
|
| 31 | 13, 14, 30 | 3eqtr4g 2681 |
. 2
|
| 32 | reldmopsr 19473 |
. . . . . . . . . 10
| |
| 33 | 32 | ovprc 6683 |
. . . . . . . . 9
|
| 34 | 33 | adantl 482 |
. . . . . . . 8
|
| 35 | 34 | fveq1d 6193 |
. . . . . . 7
|
| 36 | 2, 35 | syl5eq 2668 |
. . . . . 6
|
| 37 | 0fv 6227 |
. . . . . 6
| |
| 38 | 36, 37 | syl6eq 2672 |
. . . . 5
|
| 39 | 38 | fveq2d 6195 |
. . . 4
|
| 40 | 28 | str0 15911 |
. . . 4
|
| 41 | 39, 14, 40 | 3eqtr4g 2681 |
. . 3
|
| 42 | reldmpsr 19361 |
. . . . . . . . . . 11
| |
| 43 | 42 | ovprc 6683 |
. . . . . . . . . 10
|
| 44 | 43 | adantl 482 |
. . . . . . . . 9
|
| 45 | 1, 44 | syl5eq 2668 |
. . . . . . . 8
|
| 46 | 45 | fveq2d 6195 |
. . . . . . 7
|
| 47 | base0 15912 |
. . . . . . 7
| |
| 48 | 46, 3, 47 | 3eqtr4g 2681 |
. . . . . 6
|
| 49 | 48 | xpeq2d 5139 |
. . . . 5
|
| 50 | xp0 5552 |
. . . . 5
| |
| 51 | 49, 50 | syl6eq 2672 |
. . . 4
|
| 52 | sseq0 3975 |
. . . 4
| |
| 53 | 26, 51, 52 | sylancr 695 |
. . 3
|
| 54 | 41, 53 | eqtr4d 2659 |
. 2
|
| 55 | 31, 54 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ple 15961 df-psr 19356 df-opsr 19360 |
| This theorem is referenced by: opsrval2 19476 opsrtoslem1 19484 |
| Copyright terms: Public domain | W3C validator |