MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   Unicode version

Theorem ovolmge0 23245
Description: The set  M is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolmge0  |-  ( B  e.  M  ->  0  <_  B )
Distinct variable groups:    y, f, A    B, f, y
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolmge0
StepHypRef Expression
1 ovolval.1 . . 3  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
21elovolm 23243 . 2  |-  ( B  e.  M  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
3 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
43, 3xpex 6962 . . . . . . . 8  |-  ( RR 
X.  RR )  e. 
_V
54inex2 4800 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
6 nnex 11026 . . . . . . 7  |-  NN  e.  _V
75, 6elmap 7886 . . . . . 6  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
8 eqid 2622 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  o.  f )  =  ( ( abs  o.  -  )  o.  f )
9 eqid 2622 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
108, 9ovolsf 23241 . . . . . . . . 9  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo ) )
11 1nn 11031 . . . . . . . . 9  |-  1  e.  NN
12 ffvelrn 6357 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) : NN --> ( 0 [,) +oo )  /\  1  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ( 0 [,) +oo ) )
1310, 11, 12sylancl 694 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ( 0 [,) +oo ) )
14 elrege0 12278 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) ` 
1 )  e.  ( 0 [,) +oo )  <->  ( (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) ` 
1 )  e.  RR  /\  0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
) ) )
1514simprbi 480 . . . . . . . 8  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) ` 
1 )  e.  ( 0 [,) +oo )  ->  0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
) )
1613, 15syl 17 . . . . . . 7  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  0  <_  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) ` 
1 ) )
17 frn 6053 . . . . . . . . . 10  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo )  ->  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  C_  ( 0 [,) +oo ) )
1810, 17syl 17 . . . . . . . . 9  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  C_  (
0 [,) +oo )
)
19 icossxr 12258 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  RR*
2018, 19syl6ss 3615 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  C_  RR* )
21 ffn 6045 . . . . . . . . . 10  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo )  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  Fn  NN )
2210, 21syl 17 . . . . . . . . 9  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  Fn  NN )
23 fnfvelrn 6356 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  Fn  NN  /\  1  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) )
2422, 11, 23sylancl 694 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) )
25 supxrub 12154 . . . . . . . 8  |-  ( ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) )  C_  RR* 
/\  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  e.  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) )  ->  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
2620, 24, 25syl2anc 693 . . . . . . 7  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )
2719, 13sseldi 3601 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  RR* )
28 supxrcl 12145 . . . . . . . . 9  |-  ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  C_  RR* 
->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  e.  RR* )
2920, 28syl 17 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  e. 
RR* )
30 0xr 10086 . . . . . . . . 9  |-  0  e.  RR*
31 xrletr 11989 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  RR*  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  e. 
RR* )  ->  (
( 0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
3230, 31mp3an1 1411 . . . . . . . 8  |-  ( ( (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) ` 
1 )  e.  RR*  /\ 
sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  e.  RR* )  ->  ( ( 0  <_  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  /\  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  -> 
0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
3327, 29, 32syl2anc 693 . . . . . . 7  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( 0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
3416, 26, 33mp2and 715 . . . . . 6  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  0  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
357, 34sylbi 207 . . . . 5  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )
36 breq2 4657 . . . . 5  |-  ( B  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  -> 
( 0  <_  B  <->  0  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
3735, 36syl5ibrcom 237 . . . 4  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  ->  0  <_  B ) )
3837adantld 483 . . 3  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( A 
C_  U. ran  ( (,) 
o.  f )  /\  B  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  0  <_  B
) )
3938rexlimiv 3027 . 2  |-  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  -> 
0  <_  B )
402, 39sylbi 207 1  |-  ( B  e.  M  ->  0  <_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653    X. cxp 5112   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   (,)cioo 12175   [,)cico 12177    seqcseq 12801   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  ovolge0  23249
  Copyright terms: Public domain W3C validator