Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpcl Structured version   Visualization version   Unicode version

Theorem pell14qrexpcl 37431
Description: Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpcl  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  (Pell14QR `  D )
)

Proof of Theorem pell14qrexpcl
StepHypRef Expression
1 elznn0 11392 . . 3  |-  ( B  e.  ZZ  <->  ( B  e.  RR  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) ) )
2 simplll 798 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  B  e. 
NN0 )  ->  D  e.  ( NN  \NN ) )
3 simpllr 799 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  B  e. 
NN0 )  ->  A  e.  (Pell14QR `  D )
)
4 simpr 477 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  B  e. 
NN0 )  ->  B  e.  NN0 )
5 pell14qrexpclnn0 37430 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  B  e.  NN0 )  ->  ( A ^ B )  e.  (Pell14QR `  D )
)
62, 3, 4, 5syl3anc 1326 . . . . 5  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  B  e. 
NN0 )  ->  ( A ^ B )  e.  (Pell14QR `  D )
)
7 pell14qrre 37421 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR )
87recnd 10068 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  CC )
98ad2antrr 762 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  A  e.  CC )
10 simplr 792 . . . . . . . 8  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  B  e.  RR )
1110recnd 10068 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  B  e.  CC )
12 simpr 477 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  -u B  e.  NN0 )
13 expneg2 12869 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u B  e.  NN0 )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
149, 11, 12, 13syl3anc 1326 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
15 simplll 798 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  D  e.  ( NN  \NN ) )
16 simpllr 799 . . . . . . . 8  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  A  e.  (Pell14QR `  D )
)
17 pell14qrexpclnn0 37430 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  (Pell14QR `  D
) )
1815, 16, 12, 17syl3anc 1326 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  (Pell14QR `  D
) )
19 pell14qrreccl 37428 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  ( A ^ -u B )  e.  (Pell14QR `  D ) )  -> 
( 1  /  ( A ^ -u B ) )  e.  (Pell14QR `  D
) )
2015, 18, 19syl2anc 693 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  (
1  /  ( A ^ -u B ) )  e.  (Pell14QR `  D
) )
2114, 20eqeltrd 2701 . . . . 5  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  -u B  e.  NN0 )  ->  ( A ^ B )  e.  (Pell14QR `  D )
)
226, 21jaodan 826 . . . 4  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  (Pell14QR `  D )
)  /\  B  e.  RR )  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) )  -> 
( A ^ B
)  e.  (Pell14QR `  D
) )
2322expl 648 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( B  e.  RR  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) )  -> 
( A ^ B
)  e.  (Pell14QR `  D
) ) )
241, 23syl5bi 232 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( B  e.  ZZ  ->  ( A ^ B
)  e.  (Pell14QR `  D
) ) )
25243impia 1261 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  (Pell14QR `  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860  ◻NNcsquarenn 37400  Pell14QRcpell14qr 37403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-pell14qr 37407  df-pell1234qr 37408
This theorem is referenced by:  pellfund14  37462  pellfund14b  37463
  Copyright terms: Public domain W3C validator