Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccatpfx2 Structured version   Visualization version   Unicode version

Theorem pfxccatpfx2 41428
Description: A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
pfxccatin12.l  |-  L  =  ( # `  A
)
pfxccatpfx2.m  |-  M  =  ( # `  B
)
Assertion
Ref Expression
pfxccatpfx2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
( A ++  B ) prefix  N )  =  ( A ++  ( B prefix  ( N  -  L )
) ) )

Proof of Theorem pfxccatpfx2
StepHypRef Expression
1 ccatcl 13359 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
213adant3 1081 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  ( A ++  B )  e. Word  V
)
3 pfxccatin12.l . . . . . . 7  |-  L  =  ( # `  A
)
4 lencl 13324 . . . . . . 7  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
53, 4syl5eqel 2705 . . . . . 6  |-  ( A  e. Word  V  ->  L  e.  NN0 )
6 elfzuz 12338 . . . . . 6  |-  ( N  e.  ( ( L  +  1 ) ... ( L  +  M
) )  ->  N  e.  ( ZZ>= `  ( L  +  1 ) ) )
7 peano2nn0 11333 . . . . . . 7  |-  ( L  e.  NN0  ->  ( L  +  1 )  e. 
NN0 )
87anim1i 592 . . . . . 6  |-  ( ( L  e.  NN0  /\  N  e.  ( ZZ>= `  ( L  +  1
) ) )  -> 
( ( L  + 
1 )  e.  NN0  /\  N  e.  ( ZZ>= `  ( L  +  1
) ) ) )
95, 6, 8syl2an 494 . . . . 5  |-  ( ( A  e. Word  V  /\  N  e.  ( ( L  +  1 ) ... ( L  +  M ) ) )  ->  ( ( L  +  1 )  e. 
NN0  /\  N  e.  ( ZZ>= `  ( L  +  1 ) ) ) )
1093adant2 1080 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
( L  +  1 )  e.  NN0  /\  N  e.  ( ZZ>= `  ( L  +  1
) ) ) )
11 eluznn0 11757 . . . 4  |-  ( ( ( L  +  1 )  e.  NN0  /\  N  e.  ( ZZ>= `  ( L  +  1
) ) )  ->  N  e.  NN0 )
1210, 11syl 17 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  N  e.  NN0 )
13 pfxval 41383 . . 3  |-  ( ( ( A ++  B )  e. Word  V  /\  N  e.  NN0 )  ->  (
( A ++  B ) prefix  N )  =  ( ( A ++  B ) substr  <. 0 ,  N >. ) )
142, 12, 13syl2anc 693 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
( A ++  B ) prefix  N )  =  ( ( A ++  B ) substr  <. 0 ,  N >. ) )
15 3simpa 1058 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
1653ad2ant1 1082 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  L  e.  NN0 )
17 0elfz 12436 . . . . 5  |-  ( L  e.  NN0  ->  0  e.  ( 0 ... L
) )
1816, 17syl 17 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  0  e.  ( 0 ... L
) )
194nn0zd 11480 . . . . . . . . . . 11  |-  ( A  e. Word  V  ->  ( # `
 A )  e.  ZZ )
203, 19syl5eqel 2705 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  L  e.  ZZ )
2120adantr 481 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  L  e.  ZZ )
22 uzid 11702 . . . . . . . . 9  |-  ( L  e.  ZZ  ->  L  e.  ( ZZ>= `  L )
)
2321, 22syl 17 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  L  e.  ( ZZ>= `  L ) )
24 peano2uz 11741 . . . . . . . 8  |-  ( L  e.  ( ZZ>= `  L
)  ->  ( L  +  1 )  e.  ( ZZ>= `  L )
)
25 fzss1 12380 . . . . . . . 8  |-  ( ( L  +  1 )  e.  ( ZZ>= `  L
)  ->  ( ( L  +  1 ) ... ( L  +  M ) )  C_  ( L ... ( L  +  M ) ) )
2623, 24, 253syl 18 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( L  + 
1 ) ... ( L  +  M )
)  C_  ( L ... ( L  +  M
) ) )
27 pfxccatpfx2.m . . . . . . . . . 10  |-  M  =  ( # `  B
)
2827eqcomi 2631 . . . . . . . . 9  |-  ( # `  B )  =  M
2928oveq2i 6661 . . . . . . . 8  |-  ( L  +  ( # `  B
) )  =  ( L  +  M )
3029oveq2i 6661 . . . . . . 7  |-  ( L ... ( L  +  ( # `  B ) ) )  =  ( L ... ( L  +  M ) )
3126, 30syl6sseqr 3652 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( L  + 
1 ) ... ( L  +  M )
)  C_  ( L ... ( L  +  (
# `  B )
) ) )
3231sseld 3602 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( N  e.  ( ( L  +  1 ) ... ( L  +  M ) )  ->  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )
33323impia 1261 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )
3418, 33jca 554 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
0  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )
353pfxccatin12 41425 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( 0  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. 0 ,  N >. )  =  ( ( A substr  <. 0 ,  L >. ) ++  ( B prefix 
( N  -  L
) ) ) ) )
3615, 34, 35sylc 65 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
( A ++  B ) substr  <. 0 ,  N >. )  =  ( ( A substr  <. 0 ,  L >. ) ++  ( B prefix  ( N  -  L ) ) ) )
373opeq2i 4406 . . . . . 6  |-  <. 0 ,  L >.  =  <. 0 ,  ( # `  A
) >.
3837oveq2i 6661 . . . . 5  |-  ( A substr  <. 0 ,  L >. )  =  ( A substr  <. 0 ,  ( # `  A
) >. )
39 swrdid 13428 . . . . 5  |-  ( A  e. Word  V  ->  ( A substr  <. 0 ,  (
# `  A ) >. )  =  A )
4038, 39syl5eq 2668 . . . 4  |-  ( A  e. Word  V  ->  ( A substr  <. 0 ,  L >. )  =  A )
41403ad2ant1 1082 . . 3  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  ( A substr  <. 0 ,  L >. )  =  A )
4241oveq1d 6665 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
( A substr  <. 0 ,  L >. ) ++  ( B prefix 
( N  -  L
) ) )  =  ( A ++  ( B prefix 
( N  -  L
) ) ) )
4314, 36, 423eqtrd 2660 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  N  e.  ( ( L  + 
1 ) ... ( L  +  M )
) )  ->  (
( A ++  B ) prefix  N )  =  ( A ++  ( B prefix  ( N  -  L )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   <.cop 4183   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-pfx 41382
This theorem is referenced by:  pfxccat3a  41429
  Copyright terms: Public domain W3C validator