| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsmgp | Structured version Visualization version Unicode version | ||
| Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| prdsmgp.y |
|
| prdsmgp.m |
|
| prdsmgp.z |
|
| prdsmgp.i |
|
| prdsmgp.s |
|
| prdsmgp.r |
|
| Ref | Expression |
|---|---|
| prdsmgp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . 6
| |
| 2 | eqid 2622 |
. . . . . 6
| |
| 3 | 1, 2 | mgpbas 18495 |
. . . . 5
|
| 4 | prdsmgp.r |
. . . . . . . 8
| |
| 5 | fvco2 6273 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylan 488 |
. . . . . . 7
|
| 7 | 6 | eqcomd 2628 |
. . . . . 6
|
| 8 | 7 | fveq2d 6195 |
. . . . 5
|
| 9 | 3, 8 | syl5eq 2668 |
. . . 4
|
| 10 | 9 | ixpeq2dva 7923 |
. . 3
|
| 11 | prdsmgp.y |
. . . 4
| |
| 12 | prdsmgp.m |
. . . . . 6
| |
| 13 | eqid 2622 |
. . . . . 6
| |
| 14 | 12, 13 | mgpbas 18495 |
. . . . 5
|
| 15 | 14 | eqcomi 2631 |
. . . 4
|
| 16 | prdsmgp.s |
. . . 4
| |
| 17 | prdsmgp.i |
. . . 4
| |
| 18 | 11, 15, 16, 17, 4 | prdsbas2 16129 |
. . 3
|
| 19 | prdsmgp.z |
. . . 4
| |
| 20 | eqid 2622 |
. . . 4
| |
| 21 | fnmgp 18491 |
. . . . . 6
| |
| 22 | 21 | a1i 11 |
. . . . 5
|
| 23 | ssv 3625 |
. . . . . 6
| |
| 24 | 23 | a1i 11 |
. . . . 5
|
| 25 | fnco 5999 |
. . . . 5
| |
| 26 | 22, 4, 24, 25 | syl3anc 1326 |
. . . 4
|
| 27 | 19, 20, 16, 17, 26 | prdsbas2 16129 |
. . 3
|
| 28 | 10, 18, 27 | 3eqtr4d 2666 |
. 2
|
| 29 | eqid 2622 |
. . . 4
| |
| 30 | 12, 29 | mgpplusg 18493 |
. . 3
|
| 31 | eqid 2622 |
. . . . . . . . 9
| |
| 32 | eqid 2622 |
. . . . . . . . 9
| |
| 33 | 31, 32 | mgpplusg 18493 |
. . . . . . . 8
|
| 34 | fvco2 6273 |
. . . . . . . . . . 11
| |
| 35 | 4, 34 | sylan 488 |
. . . . . . . . . 10
|
| 36 | 35 | eqcomd 2628 |
. . . . . . . . 9
|
| 37 | 36 | fveq2d 6195 |
. . . . . . . 8
|
| 38 | 33, 37 | syl5eq 2668 |
. . . . . . 7
|
| 39 | 38 | oveqd 6667 |
. . . . . 6
|
| 40 | 39 | mpteq2dva 4744 |
. . . . 5
|
| 41 | 28, 28, 40 | mpt2eq123dv 6717 |
. . . 4
|
| 42 | fnex 6481 |
. . . . . 6
| |
| 43 | 4, 17, 42 | syl2anc 693 |
. . . . 5
|
| 44 | fndm 5990 |
. . . . . 6
| |
| 45 | 4, 44 | syl 17 |
. . . . 5
|
| 46 | 11, 16, 43, 15, 45, 29 | prdsmulr 16119 |
. . . 4
|
| 47 | fnex 6481 |
. . . . . 6
| |
| 48 | 26, 17, 47 | syl2anc 693 |
. . . . 5
|
| 49 | fndm 5990 |
. . . . . 6
| |
| 50 | 26, 49 | syl 17 |
. . . . 5
|
| 51 | eqid 2622 |
. . . . 5
| |
| 52 | 19, 16, 48, 20, 50, 51 | prdsplusg 16118 |
. . . 4
|
| 53 | 41, 46, 52 | 3eqtr4d 2666 |
. . 3
|
| 54 | 30, 53 | syl5eqr 2670 |
. 2
|
| 55 | 28, 54 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-prds 16108 df-mgp 18490 |
| This theorem is referenced by: prdsringd 18612 prdscrngd 18613 prds1 18614 pwsmgp 18618 |
| Copyright terms: Public domain | W3C validator |