MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmgp Structured version   Visualization version   Unicode version

Theorem prdsmgp 18610
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsmgp.y  |-  Y  =  ( S X_s R )
prdsmgp.m  |-  M  =  (mulGrp `  Y )
prdsmgp.z  |-  Z  =  ( S X_s (mulGrp  o.  R )
)
prdsmgp.i  |-  ( ph  ->  I  e.  V )
prdsmgp.s  |-  ( ph  ->  S  e.  W )
prdsmgp.r  |-  ( ph  ->  R  Fn  I )
Assertion
Ref Expression
prdsmgp  |-  ( ph  ->  ( ( Base `  M
)  =  ( Base `  Z )  /\  ( +g  `  M )  =  ( +g  `  Z
) ) )

Proof of Theorem prdsmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  (mulGrp `  ( R `  x ) )  =  (mulGrp `  ( R `  x ) )
2 eqid 2622 . . . . . 6  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
31, 2mgpbas 18495 . . . . 5  |-  ( Base `  ( R `  x
) )  =  (
Base `  (mulGrp `  ( R `  x )
) )
4 prdsmgp.r . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
5 fvco2 6273 . . . . . . . 8  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( (mulGrp  o.  R
) `  x )  =  (mulGrp `  ( R `  x ) ) )
64, 5sylan 488 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
(mulGrp  o.  R ) `  x )  =  (mulGrp `  ( R `  x
) ) )
76eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (mulGrp `  ( R `  x
) )  =  ( (mulGrp  o.  R ) `  x ) )
87fveq2d 6195 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  (mulGrp `  ( R `  x )
) )  =  (
Base `  ( (mulGrp  o.  R ) `  x
) ) )
93, 8syl5eq 2668 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  ( R `  x ) )  =  ( Base `  (
(mulGrp  o.  R ) `  x ) ) )
109ixpeq2dva 7923 . . 3  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  = 
X_ x  e.  I 
( Base `  ( (mulGrp  o.  R ) `  x
) ) )
11 prdsmgp.y . . . 4  |-  Y  =  ( S X_s R )
12 prdsmgp.m . . . . . 6  |-  M  =  (mulGrp `  Y )
13 eqid 2622 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  Y )
1412, 13mgpbas 18495 . . . . 5  |-  ( Base `  Y )  =  (
Base `  M )
1514eqcomi 2631 . . . 4  |-  ( Base `  M )  =  (
Base `  Y )
16 prdsmgp.s . . . 4  |-  ( ph  ->  S  e.  W )
17 prdsmgp.i . . . 4  |-  ( ph  ->  I  e.  V )
1811, 15, 16, 17, 4prdsbas2 16129 . . 3  |-  ( ph  ->  ( Base `  M
)  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
19 prdsmgp.z . . . 4  |-  Z  =  ( S X_s (mulGrp  o.  R )
)
20 eqid 2622 . . . 4  |-  ( Base `  Z )  =  (
Base `  Z )
21 fnmgp 18491 . . . . . 6  |- mulGrp  Fn  _V
2221a1i 11 . . . . 5  |-  ( ph  -> mulGrp 
Fn  _V )
23 ssv 3625 . . . . . 6  |-  ran  R  C_ 
_V
2423a1i 11 . . . . 5  |-  ( ph  ->  ran  R  C_  _V )
25 fnco 5999 . . . . 5  |-  ( (mulGrp 
Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  (mulGrp  o.  R )  Fn  I
)
2622, 4, 24, 25syl3anc 1326 . . . 4  |-  ( ph  ->  (mulGrp  o.  R )  Fn  I )
2719, 20, 16, 17, 26prdsbas2 16129 . . 3  |-  ( ph  ->  ( Base `  Z
)  =  X_ x  e.  I  ( Base `  ( (mulGrp  o.  R
) `  x )
) )
2810, 18, 273eqtr4d 2666 . 2  |-  ( ph  ->  ( Base `  M
)  =  ( Base `  Z ) )
29 eqid 2622 . . . 4  |-  ( .r
`  Y )  =  ( .r `  Y
)
3012, 29mgpplusg 18493 . . 3  |-  ( .r
`  Y )  =  ( +g  `  M
)
31 eqid 2622 . . . . . . . . 9  |-  (mulGrp `  ( R `  z ) )  =  (mulGrp `  ( R `  z ) )
32 eqid 2622 . . . . . . . . 9  |-  ( .r
`  ( R `  z ) )  =  ( .r `  ( R `  z )
)
3331, 32mgpplusg 18493 . . . . . . . 8  |-  ( .r
`  ( R `  z ) )  =  ( +g  `  (mulGrp `  ( R `  z
) ) )
34 fvco2 6273 . . . . . . . . . . 11  |-  ( ( R  Fn  I  /\  z  e.  I )  ->  ( (mulGrp  o.  R
) `  z )  =  (mulGrp `  ( R `  z ) ) )
354, 34sylan 488 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  I )  ->  (
(mulGrp  o.  R ) `  z )  =  (mulGrp `  ( R `  z
) ) )
3635eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  I )  ->  (mulGrp `  ( R `  z
) )  =  ( (mulGrp  o.  R ) `  z ) )
3736fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  z  e.  I )  ->  ( +g  `  (mulGrp `  ( R `  z )
) )  =  ( +g  `  ( (mulGrp 
o.  R ) `  z ) ) )
3833, 37syl5eq 2668 . . . . . . 7  |-  ( (
ph  /\  z  e.  I )  ->  ( .r `  ( R `  z ) )  =  ( +g  `  (
(mulGrp  o.  R ) `  z ) ) )
3938oveqd 6667 . . . . . 6  |-  ( (
ph  /\  z  e.  I )  ->  (
( x `  z
) ( .r `  ( R `  z ) ) ( y `  z ) )  =  ( ( x `  z ) ( +g  `  ( (mulGrp  o.  R
) `  z )
) ( y `  z ) ) )
4039mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( z  e.  I  |->  ( ( x `  z ) ( .r
`  ( R `  z ) ) ( y `  z ) ) )  =  ( z  e.  I  |->  ( ( x `  z
) ( +g  `  (
(mulGrp  o.  R ) `  z ) ) ( y `  z ) ) ) )
4128, 28, 40mpt2eq123dv 6717 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  M ) ,  y  e.  ( Base `  M )  |->  ( z  e.  I  |->  ( ( x `  z
) ( .r `  ( R `  z ) ) ( y `  z ) ) ) )  =  ( x  e.  ( Base `  Z
) ,  y  e.  ( Base `  Z
)  |->  ( z  e.  I  |->  ( ( x `
 z ) ( +g  `  ( (mulGrp 
o.  R ) `  z ) ) ( y `  z ) ) ) ) )
42 fnex 6481 . . . . . 6  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  R  e.  _V )
434, 17, 42syl2anc 693 . . . . 5  |-  ( ph  ->  R  e.  _V )
44 fndm 5990 . . . . . 6  |-  ( R  Fn  I  ->  dom  R  =  I )
454, 44syl 17 . . . . 5  |-  ( ph  ->  dom  R  =  I )
4611, 16, 43, 15, 45, 29prdsmulr 16119 . . . 4  |-  ( ph  ->  ( .r `  Y
)  =  ( x  e.  ( Base `  M
) ,  y  e.  ( Base `  M
)  |->  ( z  e.  I  |->  ( ( x `
 z ) ( .r `  ( R `
 z ) ) ( y `  z
) ) ) ) )
47 fnex 6481 . . . . . 6  |-  ( ( (mulGrp  o.  R )  Fn  I  /\  I  e.  V )  ->  (mulGrp  o.  R )  e.  _V )
4826, 17, 47syl2anc 693 . . . . 5  |-  ( ph  ->  (mulGrp  o.  R )  e.  _V )
49 fndm 5990 . . . . . 6  |-  ( (mulGrp 
o.  R )  Fn  I  ->  dom  (mulGrp  o.  R )  =  I )
5026, 49syl 17 . . . . 5  |-  ( ph  ->  dom  (mulGrp  o.  R
)  =  I )
51 eqid 2622 . . . . 5  |-  ( +g  `  Z )  =  ( +g  `  Z )
5219, 16, 48, 20, 50, 51prdsplusg 16118 . . . 4  |-  ( ph  ->  ( +g  `  Z
)  =  ( x  e.  ( Base `  Z
) ,  y  e.  ( Base `  Z
)  |->  ( z  e.  I  |->  ( ( x `
 z ) ( +g  `  ( (mulGrp 
o.  R ) `  z ) ) ( y `  z ) ) ) ) )
5341, 46, 523eqtr4d 2666 . . 3  |-  ( ph  ->  ( .r `  Y
)  =  ( +g  `  Z ) )
5430, 53syl5eqr 2670 . 2  |-  ( ph  ->  ( +g  `  M
)  =  ( +g  `  Z ) )
5528, 54jca 554 1  |-  ( ph  ->  ( ( Base `  M
)  =  ( Base `  Z )  /\  ( +g  `  M )  =  ( +g  `  Z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114   ran crn 5115    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   X_cixp 7908   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   X_scprds 16106  mulGrpcmgp 18489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-mgp 18490
This theorem is referenced by:  prdsringd  18612  prdscrngd  18613  prds1  18614  pwsmgp  18618
  Copyright terms: Public domain W3C validator