MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Visualization version   Unicode version

Theorem gsumdixp 18609
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b  |-  B  =  ( Base `  R
)
gsumdixp.t  |-  .x.  =  ( .r `  R )
gsumdixp.z  |-  .0.  =  ( 0g `  R )
gsumdixp.i  |-  ( ph  ->  I  e.  V )
gsumdixp.j  |-  ( ph  ->  J  e.  W )
gsumdixp.r  |-  ( ph  ->  R  e.  Ring )
gsumdixp.x  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
gsumdixp.y  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
gsumdixp.xf  |-  ( ph  ->  ( x  e.  I  |->  X ) finSupp  .0.  )
gsumdixp.yf  |-  ( ph  ->  ( y  e.  J  |->  Y ) finSupp  .0.  )
Assertion
Ref Expression
gsumdixp  |-  ( ph  ->  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R 
gsumg  ( y  e.  J  |->  Y ) ) )  =  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) ) ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, I, y    x, J, y   
x, R    x,  .x. , y    y, X    x, Y
Allowed substitution hints:    R( y)    V( x, y)    W( x, y)    X( x)    Y( y)    .0. ( x, y)

Proof of Theorem gsumdixp
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4  |-  B  =  ( Base `  R
)
2 gsumdixp.z . . . 4  |-  .0.  =  ( 0g `  R )
3 gsumdixp.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
4 ringcmn 18581 . . . . 5  |-  ( R  e.  Ring  ->  R  e. CMnd
)
53, 4syl 17 . . . 4  |-  ( ph  ->  R  e. CMnd )
6 gsumdixp.i . . . 4  |-  ( ph  ->  I  e.  V )
7 gsumdixp.j . . . . 5  |-  ( ph  ->  J  e.  W )
87adantr 481 . . . 4  |-  ( (
ph  /\  i  e.  I )  ->  J  e.  W )
93adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  R  e.  Ring )
10 gsumdixp.x . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
11 eqid 2622 . . . . . . 7  |-  ( x  e.  I  |->  X )  =  ( x  e.  I  |->  X )
1210, 11fmptd 6385 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  X ) : I --> B )
13 simpl 473 . . . . . 6  |-  ( ( i  e.  I  /\  j  e.  J )  ->  i  e.  I )
14 ffvelrn 6357 . . . . . 6  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  i  e.  I )  ->  (
( x  e.  I  |->  X ) `  i
)  e.  B )
1512, 13, 14syl2an 494 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( x  e.  I  |->  X ) `  i )  e.  B
)
16 gsumdixp.y . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
17 eqid 2622 . . . . . . 7  |-  ( y  e.  J  |->  Y )  =  ( y  e.  J  |->  Y )
1816, 17fmptd 6385 . . . . . 6  |-  ( ph  ->  ( y  e.  J  |->  Y ) : J --> B )
19 simpr 477 . . . . . 6  |-  ( ( i  e.  I  /\  j  e.  J )  ->  j  e.  J )
20 ffvelrn 6357 . . . . . 6  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  j  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  j )  e.  B )
2118, 19, 20syl2an 494 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( y  e.  J  |->  Y ) `  j )  e.  B
)
22 gsumdixp.t . . . . . 6  |-  .x.  =  ( .r `  R )
231, 22ringcl 18561 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  i
)  e.  B  /\  ( ( y  e.  J  |->  Y ) `  j )  e.  B
)  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  e.  B )
249, 15, 21, 23syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  e.  B )
25 gsumdixp.xf . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  X ) finSupp  .0.  )
2625fsuppimpd 8282 . . . . 5  |-  ( ph  ->  ( ( x  e.  I  |->  X ) supp  .0.  )  e.  Fin )
27 gsumdixp.yf . . . . . 6  |-  ( ph  ->  ( y  e.  J  |->  Y ) finSupp  .0.  )
2827fsuppimpd 8282 . . . . 5  |-  ( ph  ->  ( ( y  e.  J  |->  Y ) supp  .0.  )  e.  Fin )
29 xpfi 8231 . . . . 5  |-  ( ( ( ( x  e.  I  |->  X ) supp  .0.  )  e.  Fin  /\  (
( y  e.  J  |->  Y ) supp  .0.  )  e.  Fin )  ->  (
( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp 
.0.  ) )  e. 
Fin )
3026, 28, 29syl2anc 693 . . . 4  |-  ( ph  ->  ( ( ( x  e.  I  |->  X ) supp 
.0.  )  X.  (
( y  e.  J  |->  Y ) supp  .0.  )
)  e.  Fin )
31 ianor 509 . . . . . . 7  |-  ( -.  ( i  e.  ( ( x  e.  I  |->  X ) supp  .0.  )  /\  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
)  <->  ( -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  )  \/  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) )
32 brxp 5147 . . . . . . 7  |-  ( i ( ( ( x  e.  I  |->  X ) supp 
.0.  )  X.  (
( y  e.  J  |->  Y ) supp  .0.  )
) j  <->  ( i  e.  ( ( x  e.  I  |->  X ) supp  .0.  )  /\  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  )
) )
3331, 32xchnxbir 323 . . . . . 6  |-  ( -.  i ( ( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) j  <->  ( -.  i  e.  ( (
x  e.  I  |->  X ) supp  .0.  )  \/  -.  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
) )
34 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
i  e.  I )
35 eldif 3584 . . . . . . . . . . . 12  |-  ( i  e.  ( I  \ 
( ( x  e.  I  |->  X ) supp  .0.  ) )  <->  ( i  e.  I  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) ) )
3635biimpri 218 . . . . . . . . . . 11  |-  ( ( i  e.  I  /\  -.  i  e.  (
( x  e.  I  |->  X ) supp  .0.  )
)  ->  i  e.  ( I  \  (
( x  e.  I  |->  X ) supp  .0.  )
) )
3734, 36sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  i  e.  ( I  \  (
( x  e.  I  |->  X ) supp  .0.  )
) )
3812adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( x  e.  I  |->  X ) : I --> B )
39 ssid 3624 . . . . . . . . . . . 12  |-  ( ( x  e.  I  |->  X ) supp  .0.  )  C_  ( ( x  e.  I  |->  X ) supp  .0.  )
4039a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( x  e.  I  |->  X ) supp  .0.  )  C_  ( ( x  e.  I  |->  X ) supp 
.0.  ) )
416adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  I  e.  V )
42 fvex 6201 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
432, 42eqeltri 2697 . . . . . . . . . . . 12  |-  .0.  e.  _V
4443a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  .0.  e.  _V )
4538, 40, 41, 44suppssr 7326 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  i  e.  ( I  \  (
( x  e.  I  |->  X ) supp  .0.  )
) )  ->  (
( x  e.  I  |->  X ) `  i
)  =  .0.  )
4637, 45syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (
( x  e.  I  |->  X ) `  i
)  =  .0.  )
4746oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  (  .0.  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )
481, 22, 2ringlz 18587 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  e.  J  |->  Y ) `  j
)  e.  B )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  .0.  )
499, 21, 48syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
(  .0.  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
5049adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `
 j ) )  =  .0.  )
5147, 50eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
52 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
j  e.  J )
53 eldif 3584 . . . . . . . . . . . 12  |-  ( j  e.  ( J  \ 
( ( y  e.  J  |->  Y ) supp  .0.  ) )  <->  ( j  e.  J  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) )
5453biimpri 218 . . . . . . . . . . 11  |-  ( ( j  e.  J  /\  -.  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
)  ->  j  e.  ( J  \  (
( y  e.  J  |->  Y ) supp  .0.  )
) )
5552, 54sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  j  e.  ( J  \  (
( y  e.  J  |->  Y ) supp  .0.  )
) )
5618adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( y  e.  J  |->  Y ) : J --> B )
57 ssid 3624 . . . . . . . . . . . 12  |-  ( ( y  e.  J  |->  Y ) supp  .0.  )  C_  ( ( y  e.  J  |->  Y ) supp  .0.  )
5857a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( y  e.  J  |->  Y ) supp  .0.  )  C_  ( ( y  e.  J  |->  Y ) supp 
.0.  ) )
597adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  J  e.  W )
6056, 58, 59, 44suppssr 7326 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  j  e.  ( J  \  (
( y  e.  J  |->  Y ) supp  .0.  )
) )  ->  (
( y  e.  J  |->  Y ) `  j
)  =  .0.  )
6155, 60syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( y  e.  J  |->  Y ) `  j
)  =  .0.  )
6261oveq2d 6666 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  .0.  ) )
631, 22, 2ringrz 18588 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  i
)  e.  B )  ->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  .0.  )  =  .0.  )
649, 15, 63syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  .0.  )  =  .0.  )
6564adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  .0.  )  =  .0.  )
6662, 65eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
6751, 66jaodan 826 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  ( -.  i  e.  ( (
x  e.  I  |->  X ) supp  .0.  )  \/  -.  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
6833, 67sylan2b 492 . . . . 5  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i
( ( ( x  e.  I  |->  X ) supp 
.0.  )  X.  (
( y  e.  J  |->  Y ) supp  .0.  )
) j )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  .0.  )
6968anasss 679 . . . 4  |-  ( (
ph  /\  ( (
i  e.  I  /\  j  e.  J )  /\  -.  i ( ( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) j ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  =  .0.  )
701, 2, 5, 6, 8, 24, 30, 69gsum2d2 18373 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) ) ) )
71 nffvmpt1 6199 . . . . . . 7  |-  F/_ x
( ( x  e.  I  |->  X ) `  i )
72 nfcv 2764 . . . . . . 7  |-  F/_ x  .x.
73 nfcv 2764 . . . . . . 7  |-  F/_ x
( ( y  e.  J  |->  Y ) `  j )
7471, 72, 73nfov 6676 . . . . . 6  |-  F/_ x
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
75 nfcv 2764 . . . . . . 7  |-  F/_ y
( ( x  e.  I  |->  X ) `  i )
76 nfcv 2764 . . . . . . 7  |-  F/_ y  .x.
77 nffvmpt1 6199 . . . . . . 7  |-  F/_ y
( ( y  e.  J  |->  Y ) `  j )
7875, 76, 77nfov 6676 . . . . . 6  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
79 nfcv 2764 . . . . . 6  |-  F/_ i
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
80 nfcv 2764 . . . . . 6  |-  F/_ j
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
81 fveq2 6191 . . . . . . 7  |-  ( i  =  x  ->  (
( x  e.  I  |->  X ) `  i
)  =  ( ( x  e.  I  |->  X ) `  x ) )
82 fveq2 6191 . . . . . . 7  |-  ( j  =  y  ->  (
( y  e.  J  |->  Y ) `  j
)  =  ( ( y  e.  J  |->  Y ) `  y ) )
8381, 82oveqan12d 6669 . . . . . 6  |-  ( ( i  =  x  /\  j  =  y )  ->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )
8474, 78, 79, 80, 83cbvmpt2 6734 . . . . 5  |-  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
85 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  x  e.  I )
86103adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  X  e.  B )
8711fvmpt2 6291 . . . . . . . 8  |-  ( ( x  e.  I  /\  X  e.  B )  ->  ( ( x  e.  I  |->  X ) `  x )  =  X )
8885, 86, 87syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
x  e.  I  |->  X ) `  x )  =  X )
89 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  y  e.  J )
90163adant2 1080 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  Y  e.  B )
9117fvmpt2 6291 . . . . . . . 8  |-  ( ( y  e.  J  /\  Y  e.  B )  ->  ( ( y  e.  J  |->  Y ) `  y )  =  Y )
9289, 90, 91syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  y )  =  Y )
9388, 92oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) )  =  ( X 
.x.  Y ) )
9493mpt2eq3dva 6719 . . . . 5  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
9584, 94syl5eq 2668 . . . 4  |-  ( ph  ->  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
9695oveq2d 6666 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) ) ) )
97 nfcv 2764 . . . . . . 7  |-  F/_ x R
98 nfcv 2764 . . . . . . 7  |-  F/_ x  gsumg
99 nfcv 2764 . . . . . . . 8  |-  F/_ x J
10099, 74nfmpt 4746 . . . . . . 7  |-  F/_ x
( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )
10197, 98, 100nfov 6676 . . . . . 6  |-  F/_ x
( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )
102 nfcv 2764 . . . . . 6  |-  F/_ i
( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )
10381oveq1d 6665 . . . . . . . . 9  |-  ( i  =  x  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
104103mpteq2dv 4745 . . . . . . . 8  |-  ( i  =  x  ->  (
j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )  =  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )
105 nfcv 2764 . . . . . . . . . 10  |-  F/_ y
( ( x  e.  I  |->  X ) `  x )
106105, 76, 77nfov 6676 . . . . . . . . 9  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
10782oveq2d 6666 . . . . . . . . 9  |-  ( j  =  y  ->  (
( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
108106, 80, 107cbvmpt 4749 . . . . . . . 8  |-  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )  =  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
109104, 108syl6eq 2672 . . . . . . 7  |-  ( i  =  x  ->  (
j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )  =  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )
110109oveq2d 6666 . . . . . 6  |-  ( i  =  x  ->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )
111101, 102, 110cbvmpt 4749 . . . . 5  |-  ( i  e.  I  |->  ( R 
gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )
112933expa 1265 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) )  =  ( X  .x.  Y ) )
113112mpteq2dva 4744 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )  =  ( y  e.  J  |->  ( X  .x.  Y
) ) )
114113oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )  =  ( R 
gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) )
115114mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )
116111, 115syl5eq 2668 . . . 4  |-  ( ph  ->  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )
117116oveq2d 6666 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) ) )
11870, 96, 1173eqtr3d 2664 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) ) )
119 eqid 2622 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
1203adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
1217adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  J  e.  W )
12216adantlr 751 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  Y  e.  B )
12327adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  Y ) finSupp  .0.  )
1241, 2, 119, 22, 120, 121, 10, 122, 123gsummulc2 18607 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) )
125124mpteq2dva 4744 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) )  =  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) )
126125oveq2d 6666 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) ) )
1271, 2, 5, 7, 18, 27gsumcl 18316 . . 3  |-  ( ph  ->  ( R  gsumg  ( y  e.  J  |->  Y ) )  e.  B )
1281, 2, 119, 22, 3, 6, 127, 10, 25gsummulc1 18606 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) )  =  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) )
129118, 126, 1283eqtrrd 2661 1  |-  ( ph  ->  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R 
gsumg  ( y  e.  J  |->  Y ) ) )  =  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193   Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549
This theorem is referenced by:  evlslem2  19512
  Copyright terms: Public domain W3C validator