MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvscacl Structured version   Visualization version   Unicode version

Theorem prdsvscacl 18968
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsvscacl.y  |-  Y  =  ( S X_s R )
prdsvscacl.b  |-  B  =  ( Base `  Y
)
prdsvscacl.t  |-  .x.  =  ( .s `  Y )
prdsvscacl.k  |-  K  =  ( Base `  S
)
prdsvscacl.s  |-  ( ph  ->  S  e.  Ring )
prdsvscacl.i  |-  ( ph  ->  I  e.  W )
prdsvscacl.r  |-  ( ph  ->  R : I --> LMod )
prdsvscacl.f  |-  ( ph  ->  F  e.  K )
prdsvscacl.g  |-  ( ph  ->  G  e.  B )
prdsvscacl.sr  |-  ( (
ph  /\  x  e.  I )  ->  (Scalar `  ( R `  x
) )  =  S )
Assertion
Ref Expression
prdsvscacl  |-  ( ph  ->  ( F  .x.  G
)  e.  B )
Distinct variable groups:    x, B    x, F    x, G    x, I    x, K    x, R    x, S    ph, x    x, W    x, Y
Allowed substitution hint:    .x. ( x)

Proof of Theorem prdsvscacl
StepHypRef Expression
1 prdsvscacl.y . . 3  |-  Y  =  ( S X_s R )
2 prdsvscacl.b . . 3  |-  B  =  ( Base `  Y
)
3 prdsvscacl.t . . 3  |-  .x.  =  ( .s `  Y )
4 prdsvscacl.k . . 3  |-  K  =  ( Base `  S
)
5 prdsvscacl.s . . 3  |-  ( ph  ->  S  e.  Ring )
6 prdsvscacl.i . . 3  |-  ( ph  ->  I  e.  W )
7 prdsvscacl.r . . . 4  |-  ( ph  ->  R : I --> LMod )
8 ffn 6045 . . . 4  |-  ( R : I --> LMod  ->  R  Fn  I )
97, 8syl 17 . . 3  |-  ( ph  ->  R  Fn  I )
10 prdsvscacl.f . . 3  |-  ( ph  ->  F  e.  K )
11 prdsvscacl.g . . 3  |-  ( ph  ->  G  e.  B )
121, 2, 3, 4, 5, 6, 9, 10, 11prdsvscaval 16139 . 2  |-  ( ph  ->  ( F  .x.  G
)  =  ( x  e.  I  |->  ( F ( .s `  ( R `  x )
) ( G `  x ) ) ) )
137ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  LMod )
1410adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  K )
15 prdsvscacl.sr . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (Scalar `  ( R `  x
) )  =  S )
1615fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  (Scalar `  ( R `  x )
) )  =  (
Base `  S )
)
1716, 4syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  (Scalar `  ( R `  x )
) )  =  K )
1814, 17eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  ( Base `  (Scalar `  ( R `  x
) ) ) )
195adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  Ring )
206adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
219adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  R  Fn  I )
2211adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  B )
23 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
241, 2, 19, 20, 21, 22, 23prdsbasprj 16132 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( G `  x )  e.  ( Base `  ( R `  x )
) )
25 eqid 2622 . . . . . 6  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
26 eqid 2622 . . . . . 6  |-  (Scalar `  ( R `  x ) )  =  (Scalar `  ( R `  x ) )
27 eqid 2622 . . . . . 6  |-  ( .s
`  ( R `  x ) )  =  ( .s `  ( R `  x )
)
28 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  ( R `  x ) ) )  =  ( Base `  (Scalar `  ( R `  x
) ) )
2925, 26, 27, 28lmodvscl 18880 . . . . 5  |-  ( ( ( R `  x
)  e.  LMod  /\  F  e.  ( Base `  (Scalar `  ( R `  x
) ) )  /\  ( G `  x )  e.  ( Base `  ( R `  x )
) )  ->  ( F ( .s `  ( R `  x ) ) ( G `  x ) )  e.  ( Base `  ( R `  x )
) )
3013, 18, 24, 29syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( F ( .s `  ( R `  x ) ) ( G `  x ) )  e.  ( Base `  ( R `  x )
) )
3130ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  I 
( F ( .s
`  ( R `  x ) ) ( G `  x ) )  e.  ( Base `  ( R `  x
) ) )
321, 2, 5, 6, 9prdsbasmpt 16130 . . 3  |-  ( ph  ->  ( ( x  e.  I  |->  ( F ( .s `  ( R `
 x ) ) ( G `  x
) ) )  e.  B  <->  A. x  e.  I 
( F ( .s
`  ( R `  x ) ) ( G `  x ) )  e.  ( Base `  ( R `  x
) ) ) )
3331, 32mpbird 247 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( F ( .s
`  ( R `  x ) ) ( G `  x ) ) )  e.  B
)
3412, 33eqeltrd 2701 1  |-  ( ph  ->  ( F  .x.  G
)  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   X_scprds 16106   Ringcrg 18547   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-lmod 18865
This theorem is referenced by:  prdslmodd  18969
  Copyright terms: Public domain W3C validator