MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagaddcl Structured version   Visualization version   Unicode version

Theorem psrbagaddcl 19370
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbagaddcl  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F  oF  +  G )  e.  D )
Distinct variable groups:    f, F    f, G    f, I
Allowed substitution hints:    D( f)    V( f)

Proof of Theorem psrbagaddcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 11328 . . . 4  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  +  y )  e.  NN0 )
21adantl 482 . . 3  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  ( x  e.  NN0  /\  y  e. 
NN0 ) )  -> 
( x  +  y )  e.  NN0 )
3 simp2 1062 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  F  e.  D )
4 psrbag.d . . . . . . 7  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
54psrbag 19364 . . . . . 6  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
653ad2ant1 1082 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
73, 6mpbid 222 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) )
87simpld 475 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  F : I --> NN0 )
9 simp3 1063 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  G  e.  D )
104psrbag 19364 . . . . . 6  |-  ( I  e.  V  ->  ( G  e.  D  <->  ( G : I --> NN0  /\  ( `' G " NN )  e.  Fin ) ) )
11103ad2ant1 1082 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( G  e.  D  <->  ( G : I --> NN0  /\  ( `' G " NN )  e.  Fin ) ) )
129, 11mpbid 222 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( G : I --> NN0  /\  ( `' G " NN )  e.  Fin ) )
1312simpld 475 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  G : I --> NN0 )
14 simp1 1061 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  I  e.  V )
15 inidm 3822 . . 3  |-  ( I  i^i  I )  =  I
162, 8, 13, 14, 14, 15off 6912 . 2  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F  oF  +  G ) : I --> NN0 )
17 frnnn0supp 11349 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  +  G ) : I --> NN0 )  ->  (
( F  oF  +  G ) supp  0
)  =  ( `' ( F  oF  +  G ) " NN ) )
1814, 16, 17syl2anc 693 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( ( F  oF  +  G ) supp  0 )  =  ( `' ( F  oF  +  G ) " NN ) )
19 fvexd 6203 . . . . . 6  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
20 fvexd 6203 . . . . . 6  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  x  e.  I )  ->  ( G `  x )  e.  _V )
218feqmptd 6249 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
2213feqmptd 6249 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
2314, 19, 20, 21, 22offval2 6914 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F  oF  +  G )  =  ( x  e.  I  |->  ( ( F `  x )  +  ( G `  x ) ) ) )
2423oveq1d 6665 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( ( F  oF  +  G ) supp  0 )  =  ( ( x  e.  I  |->  ( ( F `  x )  +  ( G `  x ) ) ) supp  0 ) )
2518, 24eqtr3d 2658 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( `' ( F  oF  +  G
) " NN )  =  ( ( x  e.  I  |->  ( ( F `  x )  +  ( G `  x ) ) ) supp  0 ) )
26 frnnn0supp 11349 . . . . . . 7  |-  ( ( I  e.  V  /\  F : I --> NN0 )  ->  ( F supp  0 )  =  ( `' F " NN ) )
2714, 8, 26syl2anc 693 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F supp  0 )  =  ( `' F " NN ) )
287simprd 479 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( `' F " NN )  e.  Fin )
2927, 28eqeltrd 2701 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F supp  0 )  e.  Fin )
30 frnnn0supp 11349 . . . . . . 7  |-  ( ( I  e.  V  /\  G : I --> NN0 )  ->  ( G supp  0 )  =  ( `' G " NN ) )
3114, 13, 30syl2anc 693 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( G supp  0 )  =  ( `' G " NN ) )
3212simprd 479 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( `' G " NN )  e.  Fin )
3331, 32eqeltrd 2701 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( G supp  0 )  e.  Fin )
34 unfi 8227 . . . . 5  |-  ( ( ( F supp  0 )  e.  Fin  /\  ( G supp  0 )  e.  Fin )  ->  ( ( F supp  0 )  u.  ( G supp  0 ) )  e. 
Fin )
3529, 33, 34syl2anc 693 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( ( F supp  0
)  u.  ( G supp  0 ) )  e. 
Fin )
36 ssun1 3776 . . . . . . . . 9  |-  ( F supp  0 )  C_  (
( F supp  0 )  u.  ( G supp  0
) )
3736a1i 11 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F supp  0 ) 
C_  ( ( F supp  0 )  u.  ( G supp  0 ) ) )
38 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
3938a1i 11 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  0  e.  _V )
408, 37, 14, 39suppssr 7326 . . . . . . 7  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  x  e.  ( I  \  (
( F supp  0 )  u.  ( G supp  0
) ) ) )  ->  ( F `  x )  =  0 )
41 ssun2 3777 . . . . . . . . 9  |-  ( G supp  0 )  C_  (
( F supp  0 )  u.  ( G supp  0
) )
4241a1i 11 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( G supp  0 ) 
C_  ( ( F supp  0 )  u.  ( G supp  0 ) ) )
4313, 42, 14, 39suppssr 7326 . . . . . . 7  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  x  e.  ( I  \  (
( F supp  0 )  u.  ( G supp  0
) ) ) )  ->  ( G `  x )  =  0 )
4440, 43oveq12d 6668 . . . . . 6  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  x  e.  ( I  \  (
( F supp  0 )  u.  ( G supp  0
) ) ) )  ->  ( ( F `
 x )  +  ( G `  x
) )  =  ( 0  +  0 ) )
45 00id 10211 . . . . . 6  |-  ( 0  +  0 )  =  0
4644, 45syl6eq 2672 . . . . 5  |-  ( ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D
)  /\  x  e.  ( I  \  (
( F supp  0 )  u.  ( G supp  0
) ) ) )  ->  ( ( F `
 x )  +  ( G `  x
) )  =  0 )
4746, 14suppss2 7329 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( ( x  e.  I  |->  ( ( F `
 x )  +  ( G `  x
) ) ) supp  0
)  C_  ( ( F supp  0 )  u.  ( G supp  0 ) ) )
48 ssfi 8180 . . . 4  |-  ( ( ( ( F supp  0
)  u.  ( G supp  0 ) )  e. 
Fin  /\  ( (
x  e.  I  |->  ( ( F `  x
)  +  ( G `
 x ) ) ) supp  0 )  C_  ( ( F supp  0
)  u.  ( G supp  0 ) ) )  ->  ( ( x  e.  I  |->  ( ( F `  x )  +  ( G `  x ) ) ) supp  0 )  e.  Fin )
4935, 47, 48syl2anc 693 . . 3  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( ( x  e.  I  |->  ( ( F `
 x )  +  ( G `  x
) ) ) supp  0
)  e.  Fin )
5025, 49eqeltrd 2701 . 2  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( `' ( F  oF  +  G
) " NN )  e.  Fin )
514psrbag 19364 . . 3  |-  ( I  e.  V  ->  (
( F  oF  +  G )  e.  D  <->  ( ( F  oF  +  G
) : I --> NN0  /\  ( `' ( F  oF  +  G ) " NN )  e.  Fin ) ) )
52513ad2ant1 1082 . 2  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( ( F  oF  +  G )  e.  D  <->  ( ( F  oF  +  G
) : I --> NN0  /\  ( `' ( F  oF  +  G ) " NN )  e.  Fin ) ) )
5316, 50, 52mpbir2and 957 1  |-  ( ( I  e.  V  /\  F  e.  D  /\  G  e.  D )  ->  ( F  oF  +  G )  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574    |-> cmpt 4729   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295    ^m cmap 7857   Fincfn 7955   0cc0 9936    + caddc 9939   NNcn 11020   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293
This theorem is referenced by:  mplmon2mul  19501  evlslem1  19515  tdeglem3  23819
  Copyright terms: Public domain W3C validator