MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Visualization version   Unicode version

Theorem pwsle 16152
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y  |-  Y  =  ( R  ^s  I )
pwsle.v  |-  B  =  ( Base `  Y
)
pwsle.o  |-  O  =  ( le `  R
)
pwsle.l  |-  .<_  =  ( le `  Y )
Assertion
Ref Expression
pwsle  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  oR O  i^i  ( B  X.  B ) ) )

Proof of Theorem pwsle
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7  |-  f  e. 
_V
2 vex 3203 . . . . . . 7  |-  g  e. 
_V
31, 2prss 4351 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
4 pwsle.v . . . . . . . 8  |-  B  =  ( Base `  Y
)
5 pwsle.y . . . . . . . . . 10  |-  Y  =  ( R  ^s  I )
6 eqid 2622 . . . . . . . . . 10  |-  (Scalar `  R )  =  (Scalar `  R )
75, 6pwsval 16146 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
87fveq2d 6195 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
94, 8syl5eq 2668 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
109sseq2d 3633 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( { f ,  g }  C_  B  <->  { f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
113, 10syl5bb 272 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
1211anbi1d 741 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) ) )
13 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  R  e.  V )
14 fvconst2g 6467 . . . . . . . . . . . 12  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
1513, 14sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
1615fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  ( le
`  R ) )
17 pwsle.o . . . . . . . . . 10  |-  O  =  ( le `  R
)
1816, 17syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  O )
1918breqd 4664 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) ( le `  ( ( I  X.  { R } ) `  x ) ) ( g `  x )  <-> 
( f `  x
) O ( g `
 x ) ) )
2019ralbidva 2985 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
21 eqid 2622 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
22 simplr 792 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
23 simprl 794 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
245, 21, 4, 13, 22, 23pwselbas 16149 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f : I --> ( Base `  R ) )
25 ffn 6045 . . . . . . . . 9  |-  ( f : I --> ( Base `  R )  ->  f  Fn  I )
2624, 25syl 17 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  Fn  I )
27 simprr 796 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
285, 21, 4, 13, 22, 27pwselbas 16149 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g : I --> ( Base `  R ) )
29 ffn 6045 . . . . . . . . 9  |-  ( g : I --> ( Base `  R )  ->  g  Fn  I )
3028, 29syl 17 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  Fn  I )
31 inidm 3822 . . . . . . . 8  |-  ( I  i^i  I )  =  I
32 eqidd 2623 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  =  ( f `  x ) )
33 eqidd 2623 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  =  ( g `  x ) )
3426, 30, 22, 22, 31, 32, 33ofrfval 6905 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f  oR O g  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
3520, 34bitr4d 271 . . . . . 6  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  f  oR O g ) )
3635pm5.32da 673 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  oR O g ) ) )
37 brinxp2 5180 . . . . . 6  |-  ( f (  oR O  i^i  ( B  X.  B ) ) g  <-> 
( f  e.  B  /\  g  e.  B  /\  f  oR
O g ) )
38 df-3an 1039 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B  /\  f  oR O g )  <->  ( ( f  e.  B  /\  g  e.  B )  /\  f  oR O g ) )
3937, 38bitri 264 . . . . 5  |-  ( f (  oR O  i^i  ( B  X.  B ) ) g  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  oR O g ) )
4036, 39syl6bbr 278 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
f (  oR O  i^i  ( B  X.  B ) ) g ) )
4112, 40bitr3d 270 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) )  <->  f (  oR O  i^i  ( B  X.  B
) ) g ) )
4241opabbidv 4716 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  f (  oR O  i^i  ( B  X.  B ) ) g } )
43 pwsle.l . . . 4  |-  .<_  =  ( le `  Y )
447fveq2d 6195 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  Y
)  =  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
4543, 44syl5eq 2668 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
46 eqid 2622 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
47 fvexd 6203 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
48 simpr 477 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
49 snex 4908 . . . . 5  |-  { R }  e.  _V
50 xpexg 6960 . . . . 5  |-  ( ( I  e.  W  /\  { R }  e.  _V )  ->  ( I  X.  { R } )  e. 
_V )
5148, 49, 50sylancl 694 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  e.  _V )
52 eqid 2622 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
53 snnzg 4308 . . . . . 6  |-  ( R  e.  V  ->  { R }  =/=  (/) )
5453adantr 481 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { R }  =/=  (/) )
55 dmxp 5344 . . . . 5  |-  ( { R }  =/=  (/)  ->  dom  ( I  X.  { R } )  =  I )
5654, 55syl 17 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  dom  ( I  X.  { R } )  =  I )
57 eqid 2622 . . . 4  |-  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
5846, 47, 51, 52, 56, 57prdsle 16122 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
5945, 58eqtrd 2656 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
60 inss2 3834 . . . . 5  |-  (  oR O  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )
61 relxp 5227 . . . . 5  |-  Rel  ( B  X.  B )
62 relss 5206 . . . . 5  |-  ( (  oR O  i^i  ( B  X.  B
) )  C_  ( B  X.  B )  -> 
( Rel  ( B  X.  B )  ->  Rel  (  oR O  i^i  ( B  X.  B
) ) ) )
6360, 61, 62mp2 9 . . . 4  |-  Rel  (  oR O  i^i  ( B  X.  B
) )
6463a1i 11 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Rel  (  oR O  i^i  ( B  X.  B ) ) )
65 dfrel4v 5584 . . 3  |-  ( Rel  (  oR O  i^i  ( B  X.  B ) )  <->  (  oR O  i^i  ( B  X.  B ) )  =  { <. f ,  g >.  |  f (  oR O  i^i  ( B  X.  B ) ) g } )
6664, 65sylib 208 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (  oR O  i^i  ( B  X.  B ) )  =  { <. f ,  g
>.  |  f (  oR O  i^i  ( B  X.  B
) ) g } )
6742, 59, 663eqtr4d 2666 1  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  oR O  i^i  ( B  X.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   {copab 4712    X. cxp 5112   dom cdm 5114   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oRcofr 6896   Basecbs 15857  Scalarcsca 15944   lecple 15948   X_scprds 16106    ^s cpws 16107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-pws 16110
This theorem is referenced by:  pwsleval  16153
  Copyright terms: Public domain W3C validator