MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Visualization version   GIF version

Theorem pwsle 16152
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
Assertion
Ref Expression
pwsle ((𝑅𝑉𝐼𝑊) → = ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)))

Proof of Theorem pwsle
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7 𝑓 ∈ V
2 vex 3203 . . . . . . 7 𝑔 ∈ V
31, 2prss 4351 . . . . . 6 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
4 pwsle.v . . . . . . . 8 𝐵 = (Base‘𝑌)
5 pwsle.y . . . . . . . . . 10 𝑌 = (𝑅s 𝐼)
6 eqid 2622 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑅)
75, 6pwsval 16146 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
87fveq2d 6195 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
94, 8syl5eq 2668 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
109sseq2d 3633 . . . . . 6 ((𝑅𝑉𝐼𝑊) → ({𝑓, 𝑔} ⊆ 𝐵 ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
113, 10syl5bb 272 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
1211anbi1d 741 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))))
13 simpll 790 . . . . . . . . . . . 12 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑅𝑉)
14 fvconst2g 6467 . . . . . . . . . . . 12 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1513, 14sylan 488 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1615fveq2d 6195 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = (le‘𝑅))
17 pwsle.o . . . . . . . . . 10 𝑂 = (le‘𝑅)
1816, 17syl6eqr 2674 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = 𝑂)
1918breqd 4664 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ (𝑓𝑥)𝑂(𝑔𝑥)))
2019ralbidva 2985 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
21 eqid 2622 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
22 simplr 792 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
23 simprl 794 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
245, 21, 4, 13, 22, 23pwselbas 16149 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓:𝐼⟶(Base‘𝑅))
25 ffn 6045 . . . . . . . . 9 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
2624, 25syl 17 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
27 simprr 796 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
285, 21, 4, 13, 22, 27pwselbas 16149 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔:𝐼⟶(Base‘𝑅))
29 ffn 6045 . . . . . . . . 9 (𝑔:𝐼⟶(Base‘𝑅) → 𝑔 Fn 𝐼)
3028, 29syl 17 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
31 inidm 3822 . . . . . . . 8 (𝐼𝐼) = 𝐼
32 eqidd 2623 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
33 eqidd 2623 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
3426, 30, 22, 22, 31, 32, 33ofrfval 6905 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝑟 𝑂𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
3520, 34bitr4d 271 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ 𝑓𝑟 𝑂𝑔))
3635pm5.32da 673 . . . . 5 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓𝑟 𝑂𝑔)))
37 brinxp2 5180 . . . . . 6 (𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ (𝑓𝐵𝑔𝐵𝑓𝑟 𝑂𝑔))
38 df-3an 1039 . . . . . 6 ((𝑓𝐵𝑔𝐵𝑓𝑟 𝑂𝑔) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓𝑟 𝑂𝑔))
3937, 38bitri 264 . . . . 5 (𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓𝑟 𝑂𝑔))
4036, 39syl6bbr 278 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔))
4112, 40bitr3d 270 . . 3 ((𝑅𝑉𝐼𝑊) → (({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔))
4241opabbidv 4716 . 2 ((𝑅𝑉𝐼𝑊) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔})
43 pwsle.l . . . 4 = (le‘𝑌)
447fveq2d 6195 . . . 4 ((𝑅𝑉𝐼𝑊) → (le‘𝑌) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
4543, 44syl5eq 2668 . . 3 ((𝑅𝑉𝐼𝑊) → = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
46 eqid 2622 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
47 fvexd 6203 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
48 simpr 477 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
49 snex 4908 . . . . 5 {𝑅} ∈ V
50 xpexg 6960 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
5148, 49, 50sylancl 694 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
52 eqid 2622 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
53 snnzg 4308 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
5453adantr 481 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
55 dmxp 5344 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
5654, 55syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
57 eqid 2622 . . . 4 (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
5846, 47, 51, 52, 56, 57prdsle 16122 . . 3 ((𝑅𝑉𝐼𝑊) → (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
5945, 58eqtrd 2656 . 2 ((𝑅𝑉𝐼𝑊) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
60 inss2 3834 . . . . 5 ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
61 relxp 5227 . . . . 5 Rel (𝐵 × 𝐵)
62 relss 5206 . . . . 5 (( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))))
6360, 61, 62mp2 9 . . . 4 Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))
6463a1i 11 . . 3 ((𝑅𝑉𝐼𝑊) → Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)))
65 dfrel4v 5584 . . 3 (Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) ↔ ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6664, 65sylib 208 . 2 ((𝑅𝑉𝐼𝑊) → ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6742, 59, 663eqtr4d 2666 1 ((𝑅𝑉𝐼𝑊) → = ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179   class class class wbr 4653  {copab 4712   × cxp 5112  dom cdm 5114  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑟 cofr 6896  Basecbs 15857  Scalarcsca 15944  lecple 15948  Xscprds 16106  s cpws 16107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-pws 16110
This theorem is referenced by:  pwsleval  16153
  Copyright terms: Public domain W3C validator