MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1 Structured version   Visualization version   Unicode version

Theorem ramub1 15732
Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m  |-  ( ph  ->  M  e.  NN )
ramub1.r  |-  ( ph  ->  R  e.  Fin )
ramub1.f  |-  ( ph  ->  F : R --> NN )
ramub1.g  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
ramub1.1  |-  ( ph  ->  G : R --> NN0 )
ramub1.2  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
Assertion
Ref Expression
ramub1  |-  ( ph  ->  ( M Ramsey  F )  <_  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
Distinct variable groups:    x, y, F    x, M, y    x, G, y    x, R, y    ph, x, y

Proof of Theorem ramub1
Dummy variables  u  c  f  s  v  w  z  a  b 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramub1.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnnn0d 11351 . 2  |-  ( ph  ->  M  e.  NN0 )
4 ramub1.r . 2  |-  ( ph  ->  R  e.  Fin )
5 ramub1.f . . 3  |-  ( ph  ->  F : R --> NN )
6 nnssnn0 11295 . . 3  |-  NN  C_  NN0
7 fss 6056 . . 3  |-  ( ( F : R --> NN  /\  NN  C_  NN0 )  ->  F : R --> NN0 )
85, 6, 7sylancl 694 . 2  |-  ( ph  ->  F : R --> NN0 )
9 ramub1.2 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
10 peano2nn0 11333 . . 3  |-  ( ( ( M  -  1 ) Ramsey  G )  e. 
NN0  ->  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  e.  NN0 )
119, 10syl 17 . 2  |-  ( ph  ->  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  e.  NN0 )
12 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( # `  s
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
139adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( ( M  -  1 ) Ramsey  G )  e.  NN0 )
14 nn0p1nn 11332 . . . . . . 7  |-  ( ( ( M  -  1 ) Ramsey  G )  e. 
NN0  ->  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  e.  NN )
1513, 14syl 17 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( (
( M  -  1 ) Ramsey  G )  +  1 )  e.  NN )
1612, 15eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( # `  s
)  e.  NN )
1716nnnn0d 11351 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( # `  s
)  e.  NN0 )
18 vex 3203 . . . . . . . 8  |-  s  e. 
_V
19 hashclb 13149 . . . . . . . 8  |-  ( s  e.  _V  ->  (
s  e.  Fin  <->  ( # `  s
)  e.  NN0 )
)
2018, 19ax-mp 5 . . . . . . 7  |-  ( s  e.  Fin  <->  ( # `  s
)  e.  NN0 )
2117, 20sylibr 224 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  s  e.  Fin )
22 hashnncl 13157 . . . . . 6  |-  ( s  e.  Fin  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2321, 22syl 17 . . . . 5  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( ( # `
 s )  e.  NN  <->  s  =/=  (/) ) )
2416, 23mpbid 222 . . . 4  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  s  =/=  (/) )
25 n0 3931 . . . 4  |-  ( s  =/=  (/)  <->  E. w  w  e.  s )
2624, 25sylib 208 . . 3  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  E. w  w  e.  s )
272adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  M  e.  NN )
284adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  R  e.  Fin )
295adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  F : R --> NN )
30 ramub1.g . . . . . 6  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
31 ramub1.1 . . . . . . 7  |-  ( ph  ->  G : R --> NN0 )
3231adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  G : R --> NN0 )
339adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
3421adantrr 753 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
s  e.  Fin )
35 simprll 802 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
36 simprlr 803 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )
37 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  w  e.  s )
38 uneq1 3760 . . . . . . . 8  |-  ( v  =  u  ->  (
v  u.  { w } )  =  ( u  u.  { w } ) )
3938fveq2d 6195 . . . . . . 7  |-  ( v  =  u  ->  (
f `  ( v  u.  { w } ) )  =  ( f `
 ( u  u. 
{ w } ) ) )
4039cbvmptv 4750 . . . . . 6  |-  ( v  e.  ( ( s 
\  { w }
) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) ( M  -  1 ) )  |->  ( f `
 ( v  u. 
{ w } ) ) )  =  ( u  e.  ( ( s  \  { w } ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) ( M  - 
1 ) )  |->  ( f `  ( u  u.  { w }
) ) )
4127, 28, 29, 30, 32, 33, 1, 34, 35, 36, 37, 40ramub1lem2 15731 . . . . 5  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
4241expr 643 . . . 4  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( w  e.  s  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4342exlimdv 1861 . . 3  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( E. w  w  e.  s  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4426, 43mpd 15 . 2  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
451, 3, 4, 8, 11, 44ramub2 15718 1  |-  ( ph  ->  ( M Ramsey  F )  <_  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ram 15705
This theorem is referenced by:  ramcl  15733
  Copyright terms: Public domain W3C validator