MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1 Structured version   Visualization version   GIF version

Theorem ramub1 15732
Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
Assertion
Ref Expression
ramub1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ramub1
Dummy variables 𝑢 𝑐 𝑓 𝑠 𝑣 𝑤 𝑧 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 ramub1.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11351 . 2 (𝜑𝑀 ∈ ℕ0)
4 ramub1.r . 2 (𝜑𝑅 ∈ Fin)
5 ramub1.f . . 3 (𝜑𝐹:𝑅⟶ℕ)
6 nnssnn0 11295 . . 3 ℕ ⊆ ℕ0
7 fss 6056 . . 3 ((𝐹:𝑅⟶ℕ ∧ ℕ ⊆ ℕ0) → 𝐹:𝑅⟶ℕ0)
85, 6, 7sylancl 694 . 2 (𝜑𝐹:𝑅⟶ℕ0)
9 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
10 peano2nn0 11333 . . 3 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
119, 10syl 17 . 2 (𝜑 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
12 simprl 794 . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
139adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
14 nn0p1nn 11332 . . . . . . 7 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1612, 15eqeltrd 2701 . . . . 5 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (#‘𝑠) ∈ ℕ)
1716nnnn0d 11351 . . . . . . 7 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (#‘𝑠) ∈ ℕ0)
18 vex 3203 . . . . . . . 8 𝑠 ∈ V
19 hashclb 13149 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∈ Fin ↔ (#‘𝑠) ∈ ℕ0))
2018, 19ax-mp 5 . . . . . . 7 (𝑠 ∈ Fin ↔ (#‘𝑠) ∈ ℕ0)
2117, 20sylibr 224 . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ∈ Fin)
22 hashnncl 13157 . . . . . 6 (𝑠 ∈ Fin → ((#‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2321, 22syl 17 . . . . 5 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((#‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2416, 23mpbid 222 . . . 4 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ≠ ∅)
25 n0 3931 . . . 4 (𝑠 ≠ ∅ ↔ ∃𝑤 𝑤𝑠)
2624, 25sylib 208 . . 3 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑤 𝑤𝑠)
272adantr 481 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑀 ∈ ℕ)
284adantr 481 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑅 ∈ Fin)
295adantr 481 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐹:𝑅⟶ℕ)
30 ramub1.g . . . . . 6 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
31 ramub1.1 . . . . . . 7 (𝜑𝐺:𝑅⟶ℕ0)
3231adantr 481 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐺:𝑅⟶ℕ0)
339adantr 481 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
3421adantrr 753 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑠 ∈ Fin)
35 simprll 802 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → (#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
36 simprlr 803 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)
37 simprr 796 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑤𝑠)
38 uneq1 3760 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 ∪ {𝑤}) = (𝑢 ∪ {𝑤}))
3938fveq2d 6195 . . . . . . 7 (𝑣 = 𝑢 → (𝑓‘(𝑣 ∪ {𝑤})) = (𝑓‘(𝑢 ∪ {𝑤})))
4039cbvmptv 4750 . . . . . 6 (𝑣 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑣 ∪ {𝑤}))) = (𝑢 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑢 ∪ {𝑤})))
4127, 28, 29, 30, 32, 33, 1, 34, 35, 36, 37, 40ramub1lem2 15731 . . . . 5 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
4241expr 643 . . . 4 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4342exlimdv 1861 . . 3 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∃𝑤 𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4426, 43mpd 15 . 2 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
451, 3, 4, 8, 11, 44ramub2 15718 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292  #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ram 15705
This theorem is referenced by:  ramcl  15733
  Copyright terms: Public domain W3C validator