Proof of Theorem rdivmuldivd
| Step | Hyp | Ref
| Expression |
| 1 | | rdivmuldivd.a |
. . . 4
   |
| 2 | | rdivmuldivd.b |
. . . 4
   |
| 3 | | dvrdir.b |
. . . . . 6
     |
| 4 | | rdivmuldivd.p |
. . . . . 6
     |
| 5 | | dvrdir.u |
. . . . . 6
Unit   |
| 6 | | eqid 2622 |
. . . . . 6
         |
| 7 | | dvrdir.t |
. . . . . 6
/r   |
| 8 | 3, 4, 5, 6, 7 | dvrval 18685 |
. . . . 5
 
               |
| 9 | 8 | oveq1d 6665 |
. . . 4
 
                       |
| 10 | 1, 2, 9 | syl2anc 693 |
. . 3
                       |
| 11 | | rdivmuldivd.r |
. . . . 5
   |
| 12 | | crngring 18558 |
. . . . 5

  |
| 13 | 11, 12 | syl 17 |
. . . 4
   |
| 14 | 3, 5 | unitss 18660 |
. . . . 5
 |
| 15 | 5, 6 | unitinvcl 18674 |
. . . . . 6
             |
| 16 | 13, 2, 15 | syl2anc 693 |
. . . . 5
           |
| 17 | 14, 16 | sseldi 3601 |
. . . 4
           |
| 18 | | rdivmuldivd.c |
. . . . 5
   |
| 19 | | rdivmuldivd.d |
. . . . 5
   |
| 20 | 3, 5, 7 | dvrcl 18686 |
. . . . 5
 
     |
| 21 | 13, 18, 19, 20 | syl3anc 1326 |
. . . 4
     |
| 22 | 3, 4 | ringass 18564 |
. . . 4
  
       
              
                   |
| 23 | 13, 1, 17, 21, 22 | syl13anc 1328 |
. . 3
           
                   |
| 24 | 3, 4 | crngcom 18562 |
. . . . 5
                                       |
| 25 | 11, 17, 21, 24 | syl3anc 1326 |
. . . 4
         
                 |
| 26 | 25 | oveq2d 6666 |
. . 3
                  
            |
| 27 | 10, 23, 26 | 3eqtrd 2660 |
. 2
                       |
| 28 | | eqid 2622 |
. . . . . . . 8
 mulGrp 
↾s   mulGrp  ↾s   |
| 29 | 5, 28 | unitgrp 18667 |
. . . . . . 7

 mulGrp 
↾s    |
| 30 | 13, 29 | syl 17 |
. . . . . 6
  mulGrp  ↾s    |
| 31 | 5, 28 | unitgrpbas 18666 |
. . . . . . 7
    mulGrp  ↾s    |
| 32 | | eqid 2622 |
. . . . . . 7
   mulGrp  ↾s      mulGrp  ↾s    |
| 33 | 5, 28, 6 | invrfval 18673 |
. . . . . . 7
         mulGrp  ↾s    |
| 34 | 31, 32, 33 | grpinvadd 17493 |
. . . . . 6
   mulGrp  ↾s 
          
  mulGrp 
↾s                
  mulGrp 
↾s               |
| 35 | 30, 2, 19, 34 | syl3anc 1326 |
. . . . 5
          
  mulGrp 
↾s                
  mulGrp 
↾s               |
| 36 | | fvex 6201 |
. . . . . . . . . . 11
Unit   |
| 37 | 5, 36 | eqeltri 2697 |
. . . . . . . . . 10
 |
| 38 | | eqid 2622 |
. . . . . . . . . . 11
 ↾s   ↾s   |
| 39 | | eqid 2622 |
. . . . . . . . . . 11
mulGrp  mulGrp   |
| 40 | 38, 39 | mgpress 18500 |
. . . . . . . . . 10
    mulGrp  ↾s  mulGrp 
↾s     |
| 41 | 13, 37, 40 | sylancl 694 |
. . . . . . . . 9
  mulGrp  ↾s  mulGrp 
↾s     |
| 42 | 41 | fveq2d 6195 |
. . . . . . . 8
    mulGrp  ↾s     mulGrp 
↾s      |
| 43 | | eqid 2622 |
. . . . . . . . 9
mulGrp 
↾s   mulGrp  ↾s    |
| 44 | 38, 4 | ressmulr 16006 |
. . . . . . . . . 10
     ↾s     |
| 45 | 37, 44 | ax-mp 5 |
. . . . . . . . 9
    ↾s    |
| 46 | 43, 45 | mgpplusg 18493 |
. . . . . . . 8
  mulGrp 
↾s     |
| 47 | 42, 46 | syl6reqr 2675 |
. . . . . . 7
    mulGrp  ↾s     |
| 48 | 47 | oveqd 6667 |
. . . . . 6
        mulGrp  ↾s       |
| 49 | 48 | fveq2d 6195 |
. . . . 5
                    
  mulGrp 
↾s        |
| 50 | 47 | oveqd 6667 |
. . . . 5
         
                      mulGrp  ↾s               |
| 51 | 35, 49, 50 | 3eqtr4d 2666 |
. . . 4
                   
           |
| 52 | 51 | oveq2d 6666 |
. . 3
                                       |
| 53 | 3, 4 | ringcl 18561 |
. . . . 5
 
     |
| 54 | 13, 1, 18, 53 | syl3anc 1326 |
. . . 4
     |
| 55 | 5, 4 | unitmulcl 18664 |
. . . . 5
 
     |
| 56 | 13, 2, 19, 55 | syl3anc 1326 |
. . . 4
     |
| 57 | 3, 4, 5, 6, 7 | dvrval 18685 |
. . . 4
    
                        |
| 58 | 54, 56, 57 | syl2anc 693 |
. . 3
                       |
| 59 | 5, 6 | unitinvcl 18674 |
. . . . . . . . 9
             |
| 60 | 13, 19, 59 | syl2anc 693 |
. . . . . . . 8
           |
| 61 | 14, 60 | sseldi 3601 |
. . . . . . 7
           |
| 62 | 3, 4 | ringass 18564 |
. . . . . . 7
  
                                    |
| 63 | 13, 1, 18, 61, 62 | syl13anc 1328 |
. . . . . 6
                           |
| 64 | 3, 4, 5, 6, 7 | dvrval 18685 |
. . . . . . . 8
 
               |
| 65 | 18, 19, 64 | syl2anc 693 |
. . . . . . 7
               |
| 66 | 65 | oveq2d 6666 |
. . . . . 6
      
            |
| 67 | 63, 66 | eqtr4d 2659 |
. . . . 5
                   |
| 68 | 67 | oveq1d 6665 |
. . . 4
             
           
             |
| 69 | 3, 4 | ringass 18564 |
. . . . 5
            
                                                        |
| 70 | 13, 54, 61, 17, 69 | syl13anc 1328 |
. . . 4
             
                                 |
| 71 | 3, 4 | ringass 18564 |
. . . . 5
  

                           
             |
| 72 | 13, 1, 21, 17, 71 | syl13anc 1328 |
. . . 4
   
              
            |
| 73 | 68, 70, 72 | 3eqtr3rd 2665 |
. . 3
    
                     
            |
| 74 | 52, 58, 73 | 3eqtr4rd 2667 |
. 2
    
             
    |
| 75 | 27, 74 | eqtrd 2656 |
1
          
    |