Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexzrexnn0 Structured version   Visualization version   Unicode version

Theorem rexzrexnn0 37368
Description: Rewrite a quantification over integers into a quantification over naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
rexzrexnn0.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
rexzrexnn0.2  |-  ( x  =  -u y  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rexzrexnn0  |-  ( E. x  e.  ZZ  ph  <->  E. y  e.  NN0  ( ps  \/  ch ) )
Distinct variable groups:    ph, y    ps, x    ch, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)

Proof of Theorem rexzrexnn0
StepHypRef Expression
1 elznn0 11392 . . . . . . 7  |-  ( x  e.  ZZ  <->  ( x  e.  RR  /\  ( x  e.  NN0  \/  -u x  e.  NN0 ) ) )
21simprbi 480 . . . . . 6  |-  ( x  e.  ZZ  ->  (
x  e.  NN0  \/  -u x  e.  NN0 )
)
32adantr 481 . . . . 5  |-  ( ( x  e.  ZZ  /\  ph )  ->  ( x  e.  NN0  \/  -u x  e.  NN0 ) )
4 simpr 477 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\ 
ph )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
5 simplr 792 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\ 
ph )  /\  x  e.  NN0 )  ->  ph )
6 rexzrexnn0.1 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
76equcoms 1947 . . . . . . . . . 10  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
87bicomd 213 . . . . . . . . 9  |-  ( y  =  x  ->  ( ps 
<-> 
ph ) )
98rspcev 3309 . . . . . . . 8  |-  ( ( x  e.  NN0  /\  ph )  ->  E. y  e.  NN0  ps )
104, 5, 9syl2anc 693 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\ 
ph )  /\  x  e.  NN0 )  ->  E. y  e.  NN0  ps )
1110ex 450 . . . . . 6  |-  ( ( x  e.  ZZ  /\  ph )  ->  ( x  e.  NN0  ->  E. y  e.  NN0  ps ) )
12 simpr 477 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  -u x  e.  NN0 )  -> 
-u x  e.  NN0 )
13 zcn 11382 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  CC )
1413negnegd 10383 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  -u -u x  =  x )
1514eqcomd 2628 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  x  =  -u -u x )
16 negeq 10273 . . . . . . . . . . . . . 14  |-  ( y  =  -u x  ->  -u y  =  -u -u x )
1716eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( y  =  -u x  ->  (
x  =  -u y  <->  x  =  -u -u x ) )
1815, 17syl5ibrcom 237 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
y  =  -u x  ->  x  =  -u y
) )
1918imp 445 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  x  =  -u y )
20 rexzrexnn0.2 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  ( ph 
<->  ch ) )
2119, 20syl 17 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( ph  <->  ch )
)
2221bicomd 213 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  =  -u x )  ->  ( ch  <->  ph ) )
2322adantlr 751 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  -u x  e.  NN0 )  /\  y  =  -u x )  ->  ( ch 
<-> 
ph ) )
2412, 23rspcedv 3313 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  -u x  e.  NN0 )  ->  ( ph  ->  E. y  e.  NN0  ch ) )
2524impancom 456 . . . . . 6  |-  ( ( x  e.  ZZ  /\  ph )  ->  ( -u x  e.  NN0  ->  E. y  e.  NN0  ch ) )
2611, 25orim12d 883 . . . . 5  |-  ( ( x  e.  ZZ  /\  ph )  ->  ( (
x  e.  NN0  \/  -u x  e.  NN0 )  ->  ( E. y  e. 
NN0  ps  \/  E. y  e.  NN0  ch ) ) )
273, 26mpd 15 . . . 4  |-  ( ( x  e.  ZZ  /\  ph )  ->  ( E. y  e.  NN0  ps  \/  E. y  e.  NN0  ch ) )
28 r19.43 3093 . . . 4  |-  ( E. y  e.  NN0  ( ps  \/  ch )  <->  ( E. y  e.  NN0  ps  \/  E. y  e.  NN0  ch ) )
2927, 28sylibr 224 . . 3  |-  ( ( x  e.  ZZ  /\  ph )  ->  E. y  e.  NN0  ( ps  \/  ch ) )
3029rexlimiva 3028 . 2  |-  ( E. x  e.  ZZ  ph  ->  E. y  e.  NN0  ( ps  \/  ch ) )
31 nn0z 11400 . . . . 5  |-  ( y  e.  NN0  ->  y  e.  ZZ )
326rspcev 3309 . . . . 5  |-  ( ( y  e.  ZZ  /\  ps )  ->  E. x  e.  ZZ  ph )
3331, 32sylan 488 . . . 4  |-  ( ( y  e.  NN0  /\  ps )  ->  E. x  e.  ZZ  ph )
34 nn0negz 11415 . . . . 5  |-  ( y  e.  NN0  ->  -u y  e.  ZZ )
3520rspcev 3309 . . . . 5  |-  ( (
-u y  e.  ZZ  /\ 
ch )  ->  E. x  e.  ZZ  ph )
3634, 35sylan 488 . . . 4  |-  ( ( y  e.  NN0  /\  ch )  ->  E. x  e.  ZZ  ph )
3733, 36jaodan 826 . . 3  |-  ( ( y  e.  NN0  /\  ( ps  \/  ch ) )  ->  E. x  e.  ZZ  ph )
3837rexlimiva 3028 . 2  |-  ( E. y  e.  NN0  ( ps  \/  ch )  ->  E. x  e.  ZZ  ph )
3930, 38impbii 199 1  |-  ( E. x  e.  ZZ  ph  <->  E. y  e.  NN0  ( ps  \/  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   RRcr 9935   -ucneg 10267   NN0cn0 11292   ZZcz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  dvdsrabdioph  37374
  Copyright terms: Public domain W3C validator