Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcid Structured version   Visualization version   Unicode version

Theorem ringcid 42025
Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.)
Hypotheses
Ref Expression
ringccat.c  |-  C  =  (RingCat `  U )
ringcid.b  |-  B  =  ( Base `  C
)
ringcid.o  |-  .1.  =  ( Id `  C )
ringcid.u  |-  ( ph  ->  U  e.  V )
ringcid.x  |-  ( ph  ->  X  e.  B )
ringcid.s  |-  S  =  ( Base `  X
)
Assertion
Ref Expression
ringcid  |-  ( ph  ->  (  .1.  `  X
)  =  (  _I  |`  S ) )

Proof of Theorem ringcid
StepHypRef Expression
1 ringcid.o . . . 4  |-  .1.  =  ( Id `  C )
2 ringccat.c . . . . . 6  |-  C  =  (RingCat `  U )
3 ringcid.u . . . . . 6  |-  ( ph  ->  U  e.  V )
4 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( U  i^i  Ring )  =  ( U  i^i  Ring ) )
5 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) )  =  ( RingHom  |`  (
( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) )
62, 3, 4, 5ringcval 42008 . . . . 5  |-  ( ph  ->  C  =  ( (ExtStrCat `  U )  |`cat  ( RingHom  |`  (
( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) ) )
76fveq2d 6195 . . . 4  |-  ( ph  ->  ( Id `  C
)  =  ( Id
`  ( (ExtStrCat `  U
)  |`cat  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) ) ) )
81, 7syl5eq 2668 . . 3  |-  ( ph  ->  .1.  =  ( Id
`  ( (ExtStrCat `  U
)  |`cat  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) ) ) )
98fveq1d 6193 . 2  |-  ( ph  ->  (  .1.  `  X
)  =  ( ( Id `  ( (ExtStrCat `  U )  |`cat  ( RingHom  |`  (
( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) ) ) `  X ) )
10 eqid 2622 . . 3  |-  ( (ExtStrCat `  U )  |`cat  ( RingHom  |`  (
( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) )  =  ( (ExtStrCat `  U
)  |`cat  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) )
11 eqid 2622 . . . 4  |-  (ExtStrCat `  U
)  =  (ExtStrCat `  U
)
12 incom 3805 . . . . 5  |-  ( U  i^i  Ring )  =  (
Ring  i^i  U )
1312a1i 11 . . . 4  |-  ( ph  ->  ( U  i^i  Ring )  =  ( Ring  i^i 
U ) )
1411, 3, 13, 5rhmsubcsetc 42023 . . 3  |-  ( ph  ->  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) )  e.  (Subcat `  (ExtStrCat `  U ) ) )
154, 5rhmresfn 42009 . . 3  |-  ( ph  ->  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) )  Fn  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) )
16 eqid 2622 . . 3  |-  ( Id
`  (ExtStrCat `  U )
)  =  ( Id
`  (ExtStrCat `  U )
)
17 ringcid.x . . . 4  |-  ( ph  ->  X  e.  B )
18 ringcid.b . . . . . 6  |-  B  =  ( Base `  C
)
192, 18, 3ringcbas 42011 . . . . 5  |-  ( ph  ->  B  =  ( U  i^i  Ring ) )
2019eleq2d 2687 . . . 4  |-  ( ph  ->  ( X  e.  B  <->  X  e.  ( U  i^i  Ring ) ) )
2117, 20mpbid 222 . . 3  |-  ( ph  ->  X  e.  ( U  i^i  Ring ) )
2210, 14, 15, 16, 21subcid 16507 . 2  |-  ( ph  ->  ( ( Id `  (ExtStrCat `  U ) ) `
 X )  =  ( ( Id `  ( (ExtStrCat `  U )  |`cat  ( RingHom  |`  ( ( U  i^i  Ring )  X.  ( U  i^i  Ring ) ) ) ) ) `  X
) )
23 elinel1 3799 . . . . . 6  |-  ( X  e.  ( U  i^i  Ring )  ->  X  e.  U )
2420, 23syl6bi 243 . . . . 5  |-  ( ph  ->  ( X  e.  B  ->  X  e.  U ) )
2517, 24mpd 15 . . . 4  |-  ( ph  ->  X  e.  U )
2611, 16, 3, 25estrcid 16774 . . 3  |-  ( ph  ->  ( ( Id `  (ExtStrCat `  U ) ) `
 X )  =  (  _I  |`  ( Base `  X ) ) )
27 ringcid.s . . . . . 6  |-  S  =  ( Base `  X
)
2827eqcomi 2631 . . . . 5  |-  ( Base `  X )  =  S
2928a1i 11 . . . 4  |-  ( ph  ->  ( Base `  X
)  =  S )
3029reseq2d 5396 . . 3  |-  ( ph  ->  (  _I  |`  ( Base `  X ) )  =  (  _I  |`  S ) )
3126, 30eqtrd 2656 . 2  |-  ( ph  ->  ( ( Id `  (ExtStrCat `  U ) ) `
 X )  =  (  _I  |`  S ) )
329, 22, 313eqtr2d 2662 1  |-  ( ph  ->  (  .1.  `  X
)  =  (  _I  |`  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    i^i cin 3573    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Idccid 16326    |`cat cresc 16468  ExtStrCatcestrc 16762   Ringcrg 18547   RingHom crh 18712  RingCatcringc 42003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-hom 15966  df-cco 15967  df-0g 16102  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472  df-estrc 16763  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715  df-ringc 42005
This theorem is referenced by:  ringcsect  42031  funcringcsetcALTV2lem7  42042  srhmsubc  42076
  Copyright terms: Public domain W3C validator