MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcp1 Structured version   Visualization version   Unicode version

Theorem sadcp1 15177
Description: The carry sequence (which is a sequence of wffs, encoded as 
1o and  (/)) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
sadcp1  |-  ( ph  ->  ( (/)  e.  ( C `  ( N  +  1 ) )  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    N( m, c)

Proof of Theorem sadcp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
2 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2711 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
4 seqp1 12816 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 ( N  + 
1 ) )  =  ( (  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) ) )
53, 4syl 17 . . . . 5  |-  ( ph  ->  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( N  +  1 ) )  =  ( (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) ) )
6 sadval.c . . . . . 6  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
76fveq1i 6192 . . . . 5  |-  ( C `
 ( N  + 
1 ) )  =  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( N  +  1 ) )
86fveq1i 6192 . . . . . 6  |-  ( C `
 N )  =  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  N )
98oveq1i 6660 . . . . 5  |-  ( ( C `  N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) )  =  ( (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) )
105, 7, 93eqtr4g 2681 . . . 4  |-  ( ph  ->  ( C `  ( N  +  1 ) )  =  ( ( C `  N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) ) )
11 peano2nn0 11333 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
12 eqeq1 2626 . . . . . . . . 9  |-  ( n  =  ( N  + 
1 )  ->  (
n  =  0  <->  ( N  +  1 )  =  0 ) )
13 oveq1 6657 . . . . . . . . 9  |-  ( n  =  ( N  + 
1 )  ->  (
n  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
1412, 13ifbieq2d 4111 . . . . . . . 8  |-  ( n  =  ( N  + 
1 )  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  + 
1 )  -  1 ) ) )
15 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
16 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
17 ovex 6678 . . . . . . . . 9  |-  ( ( N  +  1 )  -  1 )  e. 
_V
1816, 17ifex 4156 . . . . . . . 8  |-  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  - 
1 ) )  e. 
_V
1914, 15, 18fvmpt 6282 . . . . . . 7  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) )  =  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) ) )
201, 11, 193syl 18 . . . . . 6  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) )  =  if ( ( N  + 
1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) ) )
21 nn0p1nn 11332 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
221, 21syl 17 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  NN )
2322nnne0d 11065 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  =/=  0 )
24 ifnefalse 4098 . . . . . . 7  |-  ( ( N  +  1 )  =/=  0  ->  if ( ( N  + 
1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) )  =  ( ( N  +  1 )  - 
1 ) )
2523, 24syl 17 . . . . . 6  |-  ( ph  ->  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) )  =  ( ( N  +  1 )  -  1 ) )
261nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
27 1cnd 10056 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
2826, 27pncand 10393 . . . . . 6  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
2920, 25, 283eqtrd 2660 . . . . 5  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) )  =  N )
3029oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( C `  N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) ) )  =  ( ( C `  N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) N ) )
31 sadval.a . . . . . . 7  |-  ( ph  ->  A  C_  NN0 )
32 sadval.b . . . . . . 7  |-  ( ph  ->  B  C_  NN0 )
3331, 32, 6sadcf 15175 . . . . . 6  |-  ( ph  ->  C : NN0 --> 2o )
3433, 1ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( C `  N
)  e.  2o )
35 simpr 477 . . . . . . . . 9  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  y  =  N )
3635eleq1d 2686 . . . . . . . 8  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  ( y  e.  A  <->  N  e.  A ) )
3735eleq1d 2686 . . . . . . . 8  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  ( y  e.  B  <->  N  e.  B ) )
38 simpl 473 . . . . . . . . 9  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  x  =  ( C `
 N ) )
3938eleq2d 2687 . . . . . . . 8  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  ( (/)  e.  x  <->  (/)  e.  ( C `  N
) ) )
4036, 37, 39cadbi123d 1549 . . . . . . 7  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  (cadd ( y  e.  A ,  y  e.  B ,  (/)  e.  x
)  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ) )
4140ifbid 4108 . . . . . 6  |-  ( ( x  =  ( C `
 N )  /\  y  =  N )  ->  if (cadd ( y  e.  A ,  y  e.  B ,  (/)  e.  x ) ,  1o ,  (/) )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  1o ,  (/) ) )
42 biidd 252 . . . . . . . . 9  |-  ( c  =  x  ->  (
m  e.  A  <->  m  e.  A ) )
43 biidd 252 . . . . . . . . 9  |-  ( c  =  x  ->  (
m  e.  B  <->  m  e.  B ) )
44 eleq2 2690 . . . . . . . . 9  |-  ( c  =  x  ->  ( (/) 
e.  c  <->  (/)  e.  x
) )
4542, 43, 44cadbi123d 1549 . . . . . . . 8  |-  ( c  =  x  ->  (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c )  <-> cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  x ) ) )
4645ifbid 4108 . . . . . . 7  |-  ( c  =  x  ->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  =  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  x ) ,  1o ,  (/) ) )
47 eleq1 2689 . . . . . . . . 9  |-  ( m  =  y  ->  (
m  e.  A  <->  y  e.  A ) )
48 eleq1 2689 . . . . . . . . 9  |-  ( m  =  y  ->  (
m  e.  B  <->  y  e.  B ) )
49 biidd 252 . . . . . . . . 9  |-  ( m  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  x
) )
5047, 48, 49cadbi123d 1549 . . . . . . . 8  |-  ( m  =  y  ->  (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  x )  <-> cadd ( y  e.  A ,  y  e.  B ,  (/)  e.  x ) ) )
5150ifbid 4108 . . . . . . 7  |-  ( m  =  y  ->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  x ) ,  1o ,  (/) )  =  if (cadd ( y  e.  A ,  y  e.  B ,  (/)  e.  x ) ,  1o ,  (/) ) )
5246, 51cbvmpt2v 6735 . . . . . 6  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )  =  ( x  e.  2o ,  y  e. 
NN0  |->  if (cadd ( y  e.  A , 
y  e.  B ,  (/) 
e.  x ) ,  1o ,  (/) ) )
53 1on 7567 . . . . . . . 8  |-  1o  e.  On
5453elexi 3213 . . . . . . 7  |-  1o  e.  _V
5554, 16ifex 4156 . . . . . 6  |-  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  1o ,  (/) )  e.  _V
5641, 52, 55ovmpt2a 6791 . . . . 5  |-  ( ( ( C `  N
)  e.  2o  /\  N  e.  NN0 )  -> 
( ( C `  N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) N )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  1o ,  (/) ) )
5734, 1, 56syl2anc 693 . . . 4  |-  ( ph  ->  ( ( C `  N ) ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) N )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  1o ,  (/) ) )
5810, 30, 573eqtrd 2660 . . 3  |-  ( ph  ->  ( C `  ( N  +  1 ) )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  1o ,  (/) ) )
5958eleq2d 2687 . 2  |-  ( ph  ->  ( (/)  e.  ( C `  ( N  +  1 ) )  <->  (/) 
e.  if (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  1o ,  (/) ) ) )
60 noel 3919 . . . . 5  |-  -.  (/)  e.  (/)
61 iffalse 4095 . . . . . 6  |-  ( -. cadd
( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) )  ->  if (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  1o ,  (/) )  =  (/) )
6261eleq2d 2687 . . . . 5  |-  ( -. cadd
( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) )  ->  ( (/)  e.  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  1o ,  (/) ) 
<->  (/)  e.  (/) ) )
6360, 62mtbiri 317 . . . 4  |-  ( -. cadd
( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) )  ->  -.  (/)  e.  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  1o ,  (/) ) )
6463con4i 113 . . 3  |-  ( (/)  e.  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  1o ,  (/) )  -> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) )
65 0lt1o 7584 . . . 4  |-  (/)  e.  1o
66 iftrue 4092 . . . 4  |-  (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) )  ->  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  1o ,  (/) )  =  1o )
6765, 66syl5eleqr 2708 . . 3  |-  (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) )  ->  (/) 
e.  if (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  1o ,  (/) ) )
6864, 67impbii 199 . 2  |-  ( (/)  e.  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  1o ,  (/) )  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) )
6959, 68syl6bb 276 1  |-  ( ph  ->  ( (/)  e.  ( C `  ( N  +  1 ) )  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483  caddwcad 1545    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   ifcif 4086    |-> cmpt 4729   Oncon0 5723   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  sadcaddlem  15179  sadadd2lem  15181  saddisjlem  15186
  Copyright terms: Public domain W3C validator