MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2a Structured version   Visualization version   Unicode version

Theorem seqf1olem2a 12839
Description: Lemma for seqf1o 12842. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqf1o.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqf1o.5  |-  ( ph  ->  C  C_  S )
seqf1olem2a.1  |-  ( ph  ->  G : A --> C )
seqf1olem2a.3  |-  ( ph  ->  K  e.  A )
seqf1olem2a.4  |-  ( ph  ->  ( M ... N
)  C_  A )
Assertion
Ref Expression
seqf1olem2a  |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) )
Distinct variable groups:    x, y,
z, G    x, M, y, z    x,  .+ , y,
z    x, N, y, z   
x, K, y, z    ph, x, y, z    x, S, y, z    x, C, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem seqf1olem2a
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 12349 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 17 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 6191 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  M
) )
54oveq2d 6666 . . . . 5  |-  ( m  =  M  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  M
) ) )
64oveq1d 6665 . . . . 5  |-  ( m  =  M  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  M )  .+  ( G `  K
) ) )
75, 6eqeq12d 2637 . . . 4  |-  ( m  =  M  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  M
) )  =  ( (  seq M ( 
.+  ,  G ) `
 M )  .+  ( G `  K ) ) ) )
87imbi2d 330 . . 3  |-  ( m  =  M  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  M )
)  =  ( (  seq M (  .+  ,  G ) `  M
)  .+  ( G `  K ) ) ) ) )
9 fveq2 6191 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  n
) )
109oveq2d 6666 . . . . 5  |-  ( m  =  n  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  n
) ) )
119oveq1d 6665 . . . . 5  |-  ( m  =  n  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  K
) ) )
1210, 11eqeq12d 2637 . . . 4  |-  ( m  =  n  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) ) ) )
1312imbi2d 330 . . 3  |-  ( m  =  n  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  n )
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) ) ) ) )
14 fveq2 6191 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )
1514oveq2d 6666 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) )
1614oveq1d 6665 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) 
.+  ( G `  K ) ) )
1715, 16eqeq12d 2637 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) )  .+  ( G `  K ) ) ) )
1817imbi2d 330 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) ) ) ) )
19 fveq2 6191 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  N
) )
2019oveq2d 6666 . . . . 5  |-  ( m  =  N  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  N
) ) )
2119oveq1d 6665 . . . . 5  |-  ( m  =  N  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  N )  .+  ( G `  K
) ) )
2220, 21eqeq12d 2637 . . . 4  |-  ( m  =  N  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) ) )
2322imbi2d 330 . . 3  |-  ( m  =  N  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  N )
)  =  ( (  seq M (  .+  ,  G ) `  N
)  .+  ( G `  K ) ) ) ) )
24 seqf1o.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
25 seqf1olem2a.1 . . . . . 6  |-  ( ph  ->  G : A --> C )
26 seqf1olem2a.3 . . . . . 6  |-  ( ph  ->  K  e.  A )
2725, 26ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( G `  K
)  e.  C )
28 eluzel2 11692 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
29 seq1 12814 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  G ) `  M
)  =  ( G `
 M ) )
301, 28, 293syl 18 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 M )  =  ( G `  M
) )
31 seqf1olem2a.4 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  C_  A )
32 eluzfz1 12348 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
331, 32syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
3431, 33sseldd 3604 . . . . . . 7  |-  ( ph  ->  M  e.  A )
3525, 34ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( G `  M
)  e.  C )
3630, 35eqeltrd 2701 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 M )  e.  C )
3724, 27, 36caovcomd 6830 . . . 4  |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  M
) )  =  ( (  seq M ( 
.+  ,  G ) `
 M )  .+  ( G `  K ) ) )
3837a1i 11 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  M
) )  =  ( (  seq M ( 
.+  ,  G ) `
 M )  .+  ( G `  K ) ) ) )
39 oveq1 6657 . . . . . 6  |-  ( ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  ->  ( (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  n
) )  .+  ( G `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  .+  ( G `
 ( n  + 
1 ) ) ) )
40 elfzouz 12474 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
4140adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
42 seqp1 12816 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
4341, 42syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
4443oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( G `  K
)  .+  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
45 seqf1o.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
4645adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
47 seqf1o.5 . . . . . . . . . . 11  |-  ( ph  ->  C  C_  S )
4847, 27sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  ( G `  K
)  e.  S )
4948adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  K )  e.  S
)
5047adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  C  C_  S
)
5150adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  C  C_  S )
5225adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  G : A --> C )
5352adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  G : A --> C )
54 elfzouz2 12484 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
5554adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  N  e.  (
ZZ>= `  n ) )
56 fzss2 12381 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
5755, 56syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... n )  C_  ( M ... N ) )
5831adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... N )  C_  A
)
5957, 58sstrd 3613 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... n )  C_  A
)
6059sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  x  e.  A )
6153, 60ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( G `  x )  e.  C )
6251, 61sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( G `  x )  e.  S )
63 seqf1o.1 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6463adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6541, 62, 64seqcl 12821 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  n )  e.  S )
66 fzofzp1 12565 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
6766adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  ( M ... N ) )
6858, 67sseldd 3604 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  A
)
6952, 68ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  C
)
7050, 69sseldd 3604 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
7146, 49, 65, 70caovassd 6833 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  n )
)  .+  ( G `  ( n  +  1 ) ) )  =  ( ( G `  K )  .+  (
(  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
7244, 71eqtr4d 2659 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  n
) )  .+  ( G `  ( n  +  1 ) ) ) )
7346, 65, 70, 49caovassd 6833 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) )  .+  ( G `  K ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  ( n  +  1 ) ) 
.+  ( G `  K ) ) ) )
7443oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) )  =  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) )  .+  ( G `  K ) ) )
7546, 65, 49, 70caovassd 6833 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  .+  ( G `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  K )  .+  ( G `  (
n  +  1 ) ) ) ) )
7624adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
7727adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  K )  e.  C
)
7876, 69, 77caovcomd 6830 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( G `
 ( n  + 
1 ) )  .+  ( G `  K ) )  =  ( ( G `  K ) 
.+  ( G `  ( n  +  1
) ) ) )
7978oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  ( n  +  1 ) ) 
.+  ( G `  K ) ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  K )  .+  ( G `  (
n  +  1 ) ) ) ) )
8075, 79eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  .+  ( G `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  ( n  +  1 ) ) 
.+  ( G `  K ) ) ) )
8173, 74, 803eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) )  =  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  .+  ( G `  ( n  +  1 ) ) ) )
8272, 81eqeq12d 2637 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) )  <-> 
( ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  .+  ( G `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  .+  ( G `
 ( n  + 
1 ) ) ) ) )
8339, 82syl5ibr 236 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  n )
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  -> 
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) )  .+  ( G `  K ) ) ) )
8483expcom 451 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  ->  ( ( G `  K )  .+  (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) ) ) ) )
8584a2d 29 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) ) )  ->  ( ph  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) )  .+  ( G `  K ) ) ) ) )
868, 13, 18, 23, 38, 85fzind2 12586 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) ) )
873, 86mpcom 38 1  |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  seqf1olem2  12841
  Copyright terms: Public domain W3C validator