MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqdistr Structured version   Visualization version   Unicode version

Theorem seqdistr 12852
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqdistr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqdistr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  =  ( ( C T x ) 
.+  ( C T y ) ) )
seqdistr.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqdistr.4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( G `  x )  e.  S
)
seqdistr.5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  ( C T ( G `
 x ) ) )
Assertion
Ref Expression
seqdistr  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
Distinct variable groups:    x, y, C    x, G, y    x, M, y    x, N, y   
x,  .+ , y    x, F    ph, x, y    x, S, y    x, T, y
Allowed substitution hint:    F( y)

Proof of Theorem seqdistr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 seqdistr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 seqdistr.4 . . 3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( G `  x )  e.  S
)
3 seqdistr.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 seqdistr.2 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  =  ( ( C T x ) 
.+  ( C T y ) ) )
5 oveq2 6658 . . . . . 6  |-  ( z  =  ( x  .+  y )  ->  ( C T z )  =  ( C T ( x  .+  y ) ) )
6 eqid 2622 . . . . . 6  |-  ( z  e.  S  |->  ( C T z ) )  =  ( z  e.  S  |->  ( C T z ) )
7 ovex 6678 . . . . . 6  |-  ( C T ( x  .+  y ) )  e. 
_V
85, 6, 7fvmpt 6282 . . . . 5  |-  ( ( x  .+  y )  e.  S  ->  (
( z  e.  S  |->  ( C T z ) ) `  (
x  .+  y )
)  =  ( C T ( x  .+  y ) ) )
91, 8syl 17 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( C T ( x  .+  y ) ) )
10 oveq2 6658 . . . . . . 7  |-  ( z  =  x  ->  ( C T z )  =  ( C T x ) )
11 ovex 6678 . . . . . . 7  |-  ( C T x )  e. 
_V
1210, 6, 11fvmpt 6282 . . . . . 6  |-  ( x  e.  S  ->  (
( z  e.  S  |->  ( C T z ) ) `  x
)  =  ( C T x ) )
1312ad2antrl 764 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  x )  =  ( C T x ) )
14 oveq2 6658 . . . . . . 7  |-  ( z  =  y  ->  ( C T z )  =  ( C T y ) )
15 ovex 6678 . . . . . . 7  |-  ( C T y )  e. 
_V
1614, 6, 15fvmpt 6282 . . . . . 6  |-  ( y  e.  S  ->  (
( z  e.  S  |->  ( C T z ) ) `  y
)  =  ( C T y ) )
1716ad2antll 765 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  y )  =  ( C T y ) )
1813, 17oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( ( z  e.  S  |->  ( C T z ) ) `
 x )  .+  ( ( z  e.  S  |->  ( C T z ) ) `  y ) )  =  ( ( C T x )  .+  ( C T y ) ) )
194, 9, 183eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( ( ( z  e.  S  |->  ( C T z ) ) `  x
)  .+  ( (
z  e.  S  |->  ( C T z ) ) `  y ) ) )
20 oveq2 6658 . . . . . 6  |-  ( z  =  ( G `  x )  ->  ( C T z )  =  ( C T ( G `  x ) ) )
21 ovex 6678 . . . . . 6  |-  ( C T ( G `  x ) )  e. 
_V
2220, 6, 21fvmpt 6282 . . . . 5  |-  ( ( G `  x )  e.  S  ->  (
( z  e.  S  |->  ( C T z ) ) `  ( G `  x )
)  =  ( C T ( G `  x ) ) )
232, 22syl 17 . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
z  e.  S  |->  ( C T z ) ) `  ( G `
 x ) )  =  ( C T ( G `  x
) ) )
24 seqdistr.5 . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  ( C T ( G `
 x ) ) )
2523, 24eqtr4d 2659 . . 3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
z  e.  S  |->  ( C T z ) ) `  ( G `
 x ) )  =  ( F `  x ) )
261, 2, 3, 19, 25seqhomo 12848 . 2  |-  ( ph  ->  ( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) )
273, 2, 1seqcl 12821 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 N )  e.  S )
28 oveq2 6658 . . . 4  |-  ( z  =  (  seq M
(  .+  ,  G
) `  N )  ->  ( C T z )  =  ( C T (  seq M
(  .+  ,  G
) `  N )
) )
29 ovex 6678 . . . 4  |-  ( C T (  seq M
(  .+  ,  G
) `  N )
)  e.  _V
3028, 6, 29fvmpt 6282 . . 3  |-  ( (  seq M (  .+  ,  G ) `  N
)  e.  S  -> 
( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
3127, 30syl 17 . 2  |-  ( ph  ->  ( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
3226, 31eqtr3d 2658 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  isermulc2  14388  fsummulc2  14516  stirlinglem7  40297
  Copyright terms: Public domain W3C validator