MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc2 Structured version   Visualization version   Unicode version

Theorem fsummulc2 14516
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1  |-  ( ph  ->  A  e.  Fin )
fsummulc2.2  |-  ( ph  ->  C  e.  CC )
fsummulc2.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsummulc2  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Distinct variable groups:    A, k    C, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsummulc2
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4  |-  ( ph  ->  C  e.  CC )
21mul01d 10235 . . 3  |-  ( ph  ->  ( C  x.  0 )  =  0 )
3 sumeq1 14419 . . . . . 6  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
4 sum0 14452 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
53, 4syl6eq 2672 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
65oveq2d 6666 . . . 4  |-  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B )  =  ( C  x.  0 ) )
7 sumeq1 14419 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  sum_ k  e.  (/)  ( C  x.  B ) )
8 sum0 14452 . . . . 5  |-  sum_ k  e.  (/)  ( C  x.  B )  =  0
97, 8syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( C  x.  B )  =  0 )
106, 9eqeq12d 2637 . . 3  |-  ( A  =  (/)  ->  ( ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B
)  <->  ( C  x.  0 )  =  0 ) )
112, 10syl5ibrcom 237 . 2  |-  ( ph  ->  ( A  =  (/)  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
12 addcl 10018 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  m  e.  CC )  ->  ( n  +  m
)  e.  CC )
1312adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( n  +  m )  e.  CC )
141adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  C  e.  CC )
15 adddi 10025 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  n  e.  CC  /\  m  e.  CC )  ->  ( C  x.  ( n  +  m ) )  =  ( ( C  x.  n )  +  ( C  x.  m ) ) )
16153expb 1266 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( C  x.  ( n  +  m
) )  =  ( ( C  x.  n
)  +  ( C  x.  m ) ) )
1714, 16sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  ( C  x.  ( n  +  m
) )  =  ( ( C  x.  n
)  +  ( C  x.  m ) ) )
18 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
19 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
2018, 19syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
21 fsummulc2.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
22 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2321, 22fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2423ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
25 simprr 796 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
2625adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
27 f1of 6137 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2826, 27syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
f : ( 1 ... ( # `  A
) ) --> A )
29 fco 6058 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3024, 28, 29syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A ) ) --> CC )
31 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  n  e.  ( 1 ... ( # `  A
) ) )
3230, 31ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
3328, 31ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
34 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
351adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
3635, 21mulcld 10060 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  B )  e.  CC )
37 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( C  x.  B ) )  =  ( k  e.  A  |->  ( C  x.  B ) )
3837fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( C  x.  B
)  e.  CC )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 k )  =  ( C  x.  B
) )
3934, 36, 38syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( C  x.  B ) )
4022fvmpt2 6291 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
4134, 21, 40syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
4241oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  ( (
k  e.  A  |->  B ) `  k ) )  =  ( C  x.  B ) )
4339, 42eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( C  x.  ( ( k  e.  A  |->  B ) `
 k ) ) )
4443ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) ) )
4544ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) ) )
46 nffvmpt1 6199 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )
47 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ k C
48 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ k  x.
49 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
5047, 48, 49nfov 6676 . . . . . . . . . . . 12  |-  F/_ k
( C  x.  (
( k  e.  A  |->  B ) `  (
f `  n )
) )
5146, 50nfeq 2776 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
52 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  k
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
53 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
5453oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  ( C  x.  ( (
k  e.  A  |->  B ) `  k ) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `
 ( f `  n ) ) ) )
5552, 54eqeq12d 2637 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) )  <->  ( ( k  e.  A  |->  ( C  x.  B ) ) `
 ( f `  n ) )  =  ( C  x.  (
( k  e.  A  |->  B ) `  (
f `  n )
) ) ) )
5651, 55rspc 3303 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  k )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  k ) )  ->  ( (
k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `  n
) ) ) ) )
5733, 45, 56sylc 65 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) ) )
5827ad2antll 765 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
59 fvco3 6275 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
6058, 59sylan 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( C  x.  B
) ) `  (
f `  n )
) )
61 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6258, 61sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6362oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( C  x.  (
( ( k  e.  A  |->  B )  o.  f ) `  n
) )  =  ( C  x.  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) ) )
6457, 60, 633eqtr4d 2666 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) `  n )  =  ( C  x.  ( ( ( k  e.  A  |->  B )  o.  f
) `  n )
) )
6513, 17, 20, 32, 64seqdistr 12852 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  +  , 
( ( k  e.  A  |->  ( C  x.  B ) )  o.  f ) ) `  ( # `  A ) )  =  ( C  x.  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) ) )
66 fveq2 6191 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( C  x.  B
) ) `  m
)  =  ( ( k  e.  A  |->  ( C  x.  B ) ) `  ( f `
 n ) ) )
6736, 37fmptd 6385 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( C  x.  B
) ) : A --> CC )
6867adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( C  x.  B ) ) : A --> CC )
6968ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m )  e.  CC )
7066, 18, 25, 69, 60fsum 14451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  ( C  x.  B
) )  o.  f
) ) `  ( # `
 A ) ) )
71 fveq2 6191 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
7223adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
7372ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7471, 18, 25, 73, 62fsum 14451 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
7574oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  ( C  x.  (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) ) ) )
7665, 70, 753eqtr4rd 2667 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  sum_ m  e.  A  ( ( k  e.  A  |->  ( C  x.  B ) ) `  m ) )
77 sumfc 14440 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
7877oveq2i 6661 . . . . . 6  |-  ( C  x.  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( C  x.  sum_ k  e.  A  B
)
79 sumfc 14440 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( C  x.  B ) ) `  m )  =  sum_ k  e.  A  ( C  x.  B
)
8076, 78, 793eqtr3g 2679 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( C  x.  sum_ k  e.  A  B )  = 
sum_ k  e.  A  ( C  x.  B
) )
8180expr 643 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) ) )
8281exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
8382expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B )
) )
84 fsummulc2.1 . . 3  |-  ( ph  ->  A  e.  Fin )
85 fz1f1o 14441 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8684, 85syl 17 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8711, 83, 86mpjaod 396 1  |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( C  x.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   (/)c0 3915    |-> cmpt 4729    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  fsummulc1  14517  fsumneg  14519  fsum2mul  14521  incexc2  14570  mertens  14618  binomrisefac  14773  fsumkthpow  14787  eirrlem  14932  pwp1fsum  15114  csbren  23182  trirn  23183  itg1addlem4  23466  itg1addlem5  23467  itg1mulc  23471  elqaalem3  24076  advlogexp  24401  fsumharmonic  24738  basellem8  24814  muinv  24919  fsumdvdsmul  24921  logfaclbnd  24947  dchrsum2  24993  sumdchr2  24995  rplogsumlem2  25174  rpvmasumlem  25176  dchrmusum2  25183  dchrvmasumlem1  25184  dchrvmasum2lem  25185  dchrvmasumlem2  25187  dchrvmasumiflem1  25190  rpvmasum2  25201  dchrisum0lem2  25207  mudivsum  25219  mulogsum  25221  mulog2sumlem1  25223  mulog2sumlem2  25224  mulog2sumlem3  25225  vmalogdivsum2  25227  logsqvma  25231  selberglem1  25234  selberglem2  25235  selberg  25237  selberg3lem1  25246  selberg4lem1  25249  selberg4  25250  selbergr  25257  selberg3r  25258  selberg34r  25260  pntsval2  25265  pntrlog2bndlem2  25267  pntrlog2bndlem3  25268  pntrlog2bndlem4  25269  pntrlog2bndlem6  25272  pntpbnd2  25276  pntlemk  25295  axsegconlem9  25805  ax5seglem1  25808  ax5seglem2  25809  ax5seglem9  25817  hgt750lemf  30731  hgt750lemb  30734  knoppndvlem11  32513  jm2.22  37562  dvnprodlem2  40162  stoweidlem26  40243  stirlinglem12  40302  fourierdlem83  40406  etransclem46  40497  pwdif  41501  altgsumbcALT  42131  aacllem  42547
  Copyright terms: Public domain W3C validator