Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem10 Structured version   Visualization version   Unicode version

Theorem stirlinglem10 40300
Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole  B sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem10.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem10.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem10.4  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem10.5  |-  L  =  ( k  e.  NN  |->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
) )
Assertion
Ref Expression
stirlinglem10  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
Distinct variable groups:    k, n    n, K    n, L    k, N, n
Allowed substitution hints:    A( k, n)    B( k, n)    K( k)    L( k)

Proof of Theorem stirlinglem10
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . 2  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . 2  |-  ( N  e.  NN  ->  1  e.  ZZ )
3 stirlinglem10.1 . . 3  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
4 stirlinglem10.2 . . 3  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
5 eqid 2622 . . 3  |-  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 ) )  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
6 stirlinglem10.4 . . 3  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
73, 4, 5, 6stirlinglem9 40299 . 2  |-  ( N  e.  NN  ->  seq 1 (  +  ,  K )  ~~>  ( ( B `  N )  -  ( B `  ( N  +  1
) ) ) )
8 2cnd 11093 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  CC )
9 nncn 11028 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
108, 9mulcld 10060 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
11 1cnd 10056 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  CC )
1210, 11addcld 10059 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
1312sqcld 13006 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC )
14 0red 10041 . . . . . . . 8  |-  ( N  e.  NN  ->  0  e.  RR )
15 1red 10055 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  RR )
16 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
1716a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  RR )
18 nnre 11027 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR )
1917, 18remulcld 10070 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
2019, 15readdcld 10069 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
21 0lt1 10550 . . . . . . . . 9  |-  0  <  1
2221a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  1 )
23 2rp 11837 . . . . . . . . . . 11  |-  2  e.  RR+
2423a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  RR+ )
25 nnrp 11842 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
2624, 25rpmulcld 11888 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
2715, 26ltaddrp2d 11906 . . . . . . . 8  |-  ( N  e.  NN  ->  1  <  ( ( 2  x.  N )  +  1 ) )
2814, 15, 20, 22, 27lttrd 10198 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
2928gt0ne0d 10592 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
30 2z 11409 . . . . . . 7  |-  2  e.  ZZ
3130a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  e.  ZZ )
3212, 29, 31expne0d 13014 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 )
3313, 32reccld 10794 . . . 4  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  e.  CC )
3415renegcld 10457 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  e.  RR )
3520resqcld 13035 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  RR )
3635, 32rereccld 10852 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  e.  RR )
37 1re 10039 . . . . . . . 8  |-  1  e.  RR
38 lt0neg2 10535 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
0  <  1  <->  -u 1  <  0 ) )
3937, 38ax-mp 5 . . . . . . 7  |-  ( 0  <  1  <->  -u 1  <  0 )
4022, 39sylib 208 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  <  0 )
4120, 29sqgt0d 13037 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4235, 41recgt0d 10958 . . . . . 6  |-  ( N  e.  NN  ->  0  <  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
4334, 14, 36, 40, 42lttrd 10198 . . . . 5  |-  ( N  e.  NN  ->  -u 1  <  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
44 2nn 11185 . . . . . . . 8  |-  2  e.  NN
4544a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  2  e.  NN )
46 expgt1 12898 . . . . . . 7  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  RR  /\  2  e.  NN  /\  1  <  ( ( 2  x.  N )  +  1 ) )  ->  1  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4720, 45, 27, 46syl3anc 1326 . . . . . 6  |-  ( N  e.  NN  ->  1  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4835, 41elrpd 11869 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  RR+ )
4948recgt1d 11886 . . . . . 6  |-  ( N  e.  NN  ->  (
1  <  ( (
( 2  x.  N
)  +  1 ) ^ 2 )  <->  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  <  1 ) )
5047, 49mpbid 222 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  <  1 )
5136, 15absltd 14168 . . . . 5  |-  ( N  e.  NN  ->  (
( abs `  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) )  <  1  <->  ( -u 1  <  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  /\  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  <  1 ) ) )
5243, 50, 51mpbir2and 957 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )  <  1 )
53 1nn0 11308 . . . . 5  |-  1  e.  NN0
5453a1i 11 . . . 4  |-  ( N  e.  NN  ->  1  e.  NN0 )
55 stirlinglem10.5 . . . . . 6  |-  L  =  ( k  e.  NN  |->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
) )
5655a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  ->  L  =  ( k  e.  NN  |->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
k ) ) )
57 simpr 477 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  /\  k  =  j )  ->  k  =  j )
5857oveq2d 6666 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  /\  k  =  j )  ->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
)  =  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ j ) )
59 elnnuz 11724 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
6059biimpri 218 . . . . . 6  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
6160adantl 482 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
j  e.  NN )
6233adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  CC )
6361nnnn0d 11351 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
j  e.  NN0 )
6462, 63expcld 13008 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ j
)  e.  CC )
6556, 58, 61, 64fvmptd 6288 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( L `  j
)  =  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ j ) )
6633, 52, 54, 65geolim2 14602 . . 3  |-  ( N  e.  NN  ->  seq 1 (  +  ,  L )  ~~>  ( ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) ) )
6733exp1d 13003 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  =  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
6813, 32dividd 10799 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  1 )
6968eqcomd 2628 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
7069oveq1d 6665 . . . . . 6  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
7148rpcnne0d 11881 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) )
72 divsubdir 10721 . . . . . . 7  |-  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  1  e.  CC  /\  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) )  ->  ( (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  =  ( ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  -  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ) )
7313, 11, 71, 72syl3anc 1326 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  -  1 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
74 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
75 binom2 12979 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
7610, 74, 75sylancl 694 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
7776oveq1d 6665 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) )  - 
1 ) )
788, 9sqmuld 13020 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
79 sq2 12960 . . . . . . . . . . . . . . 15  |-  ( 2 ^ 2 )  =  4
8079a1i 11 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2 ^ 2 )  =  4 )
8180oveq1d 6665 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
8278, 81eqtrd 2656 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
8310mulid1d 10057 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  x.  1 )  =  ( 2  x.  N ) )
8483oveq2d 6666 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  ( ( 2  x.  N )  x.  1 ) )  =  ( 2  x.  ( 2  x.  N
) ) )
858, 8, 9mulassd 10063 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
86 2t2e4 11177 . . . . . . . . . . . . . . 15  |-  ( 2  x.  2 )  =  4
8786a1i 11 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2  x.  2 )  =  4 )
8887oveq1d 6665 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
8984, 85, 883eqtr2d 2662 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  ( ( 2  x.  N )  x.  1 ) )  =  ( 4  x.  N ) )
9082, 89oveq12d 6668 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
91 4cn 11098 . . . . . . . . . . . . 13  |-  4  e.  CC
9291a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  4  e.  CC )
939sqcld 13006 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
9492, 93, 9adddid 10064 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
959sqvald 13005 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ 2 )  =  ( N  x.  N
) )
969mulid1d 10057 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( N  x.  1 )  =  N )
9796eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  =  ( N  x.  1 ) )
9895, 97oveq12d 6668 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
999, 9, 11adddid 10064 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
10098, 99eqtr4d 2659 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
101100oveq2d 6666 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
10290, 94, 1013eqtr2d 2662 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
103 sq1 12958 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
104103a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1 ^ 2 )  =  1 )
105102, 104oveq12d 6668 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  +  1 ) )
106105oveq1d 6665 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
( 2  x.  N
)  x.  1 ) ) )  +  ( 1 ^ 2 ) )  -  1 )  =  ( ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  +  1 )  - 
1 ) )
1079, 11addcld 10059 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
1089, 107mulcld 10060 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  e.  CC )
10992, 108mulcld 10060 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
4  x.  ( N  x.  ( N  + 
1 ) ) )  e.  CC )
110109, 11pncand 10393 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 4  x.  ( N  x.  ( N  +  1 ) ) )  +  1 )  -  1 )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
11177, 106, 1103eqtrd 2660 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
112111oveq1d 6665 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  -  1 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
11370, 73, 1123eqtr2d 2662 . . . . 5  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
11467, 113oveq12d 6668 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )  =  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  / 
( ( 4  x.  ( N  x.  ( N  +  1 ) ) )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
115 4pos 11116 . . . . . . . . 9  |-  0  <  4
116115a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  4 )
117116gt0ne0d 10592 . . . . . . 7  |-  ( N  e.  NN  ->  4  =/=  0 )
118 nnne0 11053 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
11918, 15readdcld 10069 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
120 nngt0 11049 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
12118ltp1d 10954 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
12214, 18, 119, 120, 121lttrd 10198 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
123122gt0ne0d 10592 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
1249, 107, 118, 123mulne0d 10679 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =/=  0 )
12592, 108, 117, 124mulne0d 10679 . . . . . 6  |-  ( N  e.  NN  ->  (
4  x.  ( N  x.  ( N  + 
1 ) ) )  =/=  0 )
12611, 13, 109, 13, 32, 32, 125divdivdivd 10848 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 1  x.  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
12711, 13mulcomd 10061 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  x.  1 ) )
128127oveq1d 6665 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  x.  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  1 )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
12911mulid1d 10057 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  1 )  =  1 )
130129eqcomd 2628 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  =  ( 1  x.  1 ) )
131130oveq1d 6665 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )
13211, 92, 11, 108, 117, 124divmuldivd 10842 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  ( 1  /  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )
133131, 132eqtr4d 2659 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
13468, 133oveq12d 6668 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  x.  ( 1  /  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( 1  x.  ( ( 1  / 
4 )  x.  (
1  /  ( N  x.  ( N  + 
1 ) ) ) ) ) )
13513, 13, 11, 109, 32, 125divmuldivd 10842 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  x.  ( 1  /  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  1 )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
13692, 117reccld 10794 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  4 )  e.  CC )
137108, 124reccld 10794 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( N  x.  ( N  + 
1 ) ) )  e.  CC )
138136, 137mulcld 10060 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  ( 1  /  ( N  x.  ( N  +  1
) ) ) )  e.  CC )
139138mulid2d 10058 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( 1  /  4 )  x.  ( 1  / 
( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
140134, 135, 1393eqtr3d 2664 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  1 )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
141126, 128, 1403eqtrd 2660 . . . 4  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
142114, 141eqtrd 2656 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
14366, 142breqtrd 4679 . 2  |-  ( N  e.  NN  ->  seq 1 (  +  ,  L )  ~~>  ( ( 1  /  4 )  x.  ( 1  / 
( N  x.  ( N  +  1 ) ) ) ) )
14459biimpi 206 . . . 4  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
145144adantl 482 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
1466a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
147 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
148147oveq1d 6665 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
149148oveq2d 6666 . . . . . . . 8  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
150147oveq2d 6666 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
151149, 150oveq12d 6668 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
152151adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  /\  k  =  n )  ->  ( (
1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  k
) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
153 elfznn 12370 . . . . . . 7  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
154153adantl 482 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
155 2cnd 11093 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
156154nncnd 11036 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
157155, 156mulcld 10060 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
158 1cnd 10056 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
159157, 158addcld 10059 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  e.  CC )
160 0red 10041 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  e.  RR )
161 1red 10055 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  e.  RR )
16216a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  RR )
163 nnre 11027 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR )
164162, 163remulcld 10070 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
165164, 161readdcld 10069 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
16621a1i 11 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  1 )
16723a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  RR+ )
168 nnrp 11842 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR+ )
169167, 168rpmulcld 11888 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
170161, 169ltaddrp2d 11906 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
171160, 161, 165, 166, 170lttrd 10198 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
172153, 171syl 17 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  0  <  ( ( 2  x.  n )  +  1 ) )
173172gt0ne0d 10592 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
174173adantl 482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  =/=  0
)
175159, 174reccld 10794 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  e.  CC )
1769adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
177155, 176mulcld 10060 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
178177, 158addcld 10059 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  e.  CC )
17929adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  =/=  0
)
180178, 179reccld 10794 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  N )  +  1 ) )  e.  CC )
181 2nn0 11309 . . . . . . . . . 10  |-  2  e.  NN0
182181a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
183154nnnn0d 11351 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
184182, 183nn0mulcld 11356 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  NN0 )
185180, 184expcld 13008 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  e.  CC )
186175, 185mulcld 10060 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  e.  CC )
187146, 152, 154, 186fvmptd 6288 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
188187adantlr 751 . . . 4  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
189171gt0ne0d 10592 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
190165, 189rereccld 10852 . . . . . . 7  |-  ( n  e.  NN  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
191153, 190syl 17 . . . . . 6  |-  ( n  e.  ( 1 ... j )  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
192191adantl 482 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
19320, 29rereccld 10852 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR )
194193adantr 481 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  N )  +  1 ) )  e.  RR )
195194, 184reexpcld 13025 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  e.  RR )
196195adantlr 751 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  RR )
197192, 196remulcld 10070 . . . 4  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  RR )
198188, 197eqeltrd 2701 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  e.  RR )
199 readdcl 10019 . . . 4  |-  ( ( n  e.  RR  /\  i  e.  RR )  ->  ( n  +  i )  e.  RR )
200199adantl 482 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  RR  /\  i  e.  RR ) )  -> 
( n  +  i )  e.  RR )
201145, 198, 200seqcl 12821 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  K ) `
 j )  e.  RR )
20255a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  L  =  ( k  e.  NN  |->  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k ) ) )
203 oveq2 6658 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k )  =  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n ) )
204203adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  /\  k  =  n )  ->  ( (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ k )  =  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )
20533adantr 481 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  CC )
206205, 183expcld 13008 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  CC )
207202, 204, 154, 206fvmptd 6288 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
20836adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  RR )
209208, 183reexpcld 13025 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  RR )
210207, 209eqeltrd 2701 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  e.  RR )
211210adantlr 751 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  e.  RR )
212145, 211, 200seqcl 12821 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  L ) `
 j )  e.  RR )
21330a1i 11 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... j )  ->  2  e.  ZZ )
214 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ZZ )
215213, 214zmulcld 11488 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  (
2  x.  n )  e.  ZZ )
216 1exp 12889 . . . . . . . . . . . 12  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
217215, 216syl 17 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
218 1exp 12889 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
219214, 218syl 17 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ n )  =  1 )
220217, 219eqtr4d 2659 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ ( 2  x.  n ) )  =  ( 1 ^ n ) )
221220adantl 482 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n
) )  =  ( 1 ^ n ) )
222178, 183, 182expmuld 13011 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) )
223221, 222oveq12d 6668 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1 ^ ( 2  x.  n ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) )  =  ( ( 1 ^ n
)  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) ) )
224158, 178, 179, 184expdivd 13022 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  =  ( ( 1 ^ (
2  x.  n ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) )
225178sqcld 13006 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  e.  CC )
22630a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
227178, 179, 226expne0d 13014 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  =/=  0
)
228158, 225, 227, 183expdivd 13022 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  =  ( ( 1 ^ n
)  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) ) )
229223, 224, 2283eqtr4d 2666 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
230229oveq2d 6666 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) )
231 1rp 11836 . . . . . . . . . . 11  |-  1  e.  RR+
232231a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  RR+ )
23316a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  RR )
234154nnred 11035 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  RR )
235233, 234remulcld 10070 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  RR )
236182nn0ge0d 11354 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  2
)
237183nn0ge0d 11354 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  n
)
238233, 234, 236, 237mulge0d 10604 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  (
2  x.  n ) )
239235, 238ge0p1rpd 11902 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  e.  RR+ )
240 1red 10055 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  RR )
241232rpge0d 11876 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  1
)
242161, 165, 170ltled 10185 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  <_  ( ( 2  x.  n )  +  1 ) )
243153, 242syl 17 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  1  <_  ( ( 2  x.  n )  +  1 ) )
244243adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  <_  (
( 2  x.  n
)  +  1 ) )
245232, 239, 240, 241, 244lediv2ad 11894 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  <_  (
1  /  1 ) )
246158div1d 10793 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
1 )  =  1 )
247245, 246breqtrd 4679 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  <_  1
)
248154, 190syl 17 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  e.  RR )
24918adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  N  e.  RR )
250233, 249remulcld 10070 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  RR )
25114, 18, 120ltled 10185 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <_  N )
252251adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  N
)
253233, 249, 236, 252mulge0d 10604 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  (
2  x.  N ) )
254250, 253ge0p1rpd 11902 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  e.  RR+ )
255254, 226rpexpcld 13032 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  e.  RR+ )
256255rpreccld 11882 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  RR+ )
257214adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
258256, 257rpexpcld 13032 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  RR+ )
259248, 240, 258lemul1d 11915 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  <_ 
1  <->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
1  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) ) )
260247, 259mpbid 222 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
1  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) )
261206mulid2d 10058 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
262260, 261breqtrd 4679 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
263230, 262eqbrtrd 4675 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  <_  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
264263, 187, 2073brtr4d 4685 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  <_  ( L `  n )
)
265264adantlr 751 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  <_  ( L `  n )
)
266145, 198, 211, 265serle 12856 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  K ) `
 j )  <_ 
(  seq 1 (  +  ,  L ) `  j ) )
2671, 2, 7, 143, 201, 212, 266climle 14370 1  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801   ^cexp 12860   !cfa 13060   sqrcsqrt 13973   abscabs 13974    ~~> cli 14215   _eceu 14793   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-cxp 24304
This theorem is referenced by:  stirlinglem12  40302
  Copyright terms: Public domain W3C validator