Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvn Structured version   Visualization version   Unicode version

Theorem signstfvn 30646
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
Assertion
Ref Expression
signstfvn  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( T `  ( F ++  <" K "> ) ) `  ( # `  F ) )  =  ( ( ( T `  F
) `  ( ( # `
 F )  - 
1 ) )  .+^  (sgn `  K ) ) )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, K, i, n    f, W, i, n
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j, n, a, b)    F( j, a, b)    K( j, a, b)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signstfvn
StepHypRef Expression
1 signsv.p . . . . 5  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
2 signsv.w . . . . 5  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
31, 2signswbase 30631 . . . 4  |-  { -u
1 ,  0 ,  1 }  =  (
Base `  W )
41, 2signswmnd 30634 . . . . 5  |-  W  e. 
Mnd
54a1i 11 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  W  e.  Mnd )
6 eldifi 3732 . . . . . . . . 9  |-  ( F  e.  (Word  RR  \  { (/) } )  ->  F  e. Word  RR )
7 lencl 13324 . . . . . . . . 9  |-  ( F  e. Word  RR  ->  ( # `  F )  e.  NN0 )
86, 7syl 17 . . . . . . . 8  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( # `  F )  e.  NN0 )
9 eldifsn 4317 . . . . . . . . 9  |-  ( F  e.  (Word  RR  \  { (/) } )  <->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
10 hasheq0 13154 . . . . . . . . . . 11  |-  ( F  e. Word  RR  ->  ( (
# `  F )  =  0  <->  F  =  (/) ) )
1110necon3bid 2838 . . . . . . . . . 10  |-  ( F  e. Word  RR  ->  ( (
# `  F )  =/=  0  <->  F  =/=  (/) ) )
1211biimpar 502 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  ( # `
 F )  =/=  0 )
139, 12sylbi 207 . . . . . . . 8  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( # `  F )  =/=  0 )
14 elnnne0 11306 . . . . . . . 8  |-  ( (
# `  F )  e.  NN  <->  ( ( # `  F )  e.  NN0  /\  ( # `  F
)  =/=  0 ) )
158, 13, 14sylanbrc 698 . . . . . . 7  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( # `  F )  e.  NN )
1615adantr 481 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  NN )
17 nnm1nn0 11334 . . . . . 6  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  NN0 )
1816, 17syl 17 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( # `  F
)  -  1 )  e.  NN0 )
19 nn0uz 11722 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2018, 19syl6eleq 2711 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( # `  F
)  -  1 )  e.  ( ZZ>= `  0
) )
21 s1cl 13382 . . . . . . . . . 10  |-  ( K  e.  RR  ->  <" K ">  e. Word  RR )
22 ccatcl 13359 . . . . . . . . . 10  |-  ( ( F  e. Word  RR  /\  <" K ">  e. Word  RR )  ->  ( F ++  <" K "> )  e. Word  RR )
236, 21, 22syl2an 494 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( F ++  <" K "> )  e. Word  RR )
2423adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  ( F ++  <" K "> )  e. Word  RR )
25 wrdf 13310 . . . . . . . 8  |-  ( ( F ++  <" K "> )  e. Word  RR  ->  ( F ++  <" K "> ) : ( 0..^ ( # `  ( F ++  <" K "> ) ) ) --> RR )
2624, 25syl 17 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  ( F ++  <" K "> ) : ( 0..^ (
# `  ( F ++  <" K "> ) ) ) --> RR )
278adantr 481 . . . . . . . . . . . 12  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  NN0 )
2827nn0zd 11480 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  ZZ )
29 fzoval 12471 . . . . . . . . . . 11  |-  ( (
# `  F )  e.  ZZ  ->  ( 0..^ ( # `  F
) )  =  ( 0 ... ( (
# `  F )  -  1 ) ) )
3028, 29syl 17 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0..^ ( # `  F ) )  =  ( 0 ... (
( # `  F )  -  1 ) ) )
31 fzossfz 12488 . . . . . . . . . 10  |-  ( 0..^ ( # `  F
) )  C_  (
0 ... ( # `  F
) )
3230, 31syl6eqssr 3656 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0 ... (
( # `  F )  -  1 ) ) 
C_  ( 0 ... ( # `  F
) ) )
33 ccatlen 13360 . . . . . . . . . . . . 13  |-  ( ( F  e. Word  RR  /\  <" K ">  e. Word  RR )  ->  ( # `
 ( F ++  <" K "> )
)  =  ( (
# `  F )  +  ( # `  <" K "> )
) )
346, 21, 33syl2an 494 . . . . . . . . . . . 12  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  ( F ++  <" K "> ) )  =  ( ( # `  F
)  +  ( # `  <" K "> ) ) )
35 s1len 13385 . . . . . . . . . . . . 13  |-  ( # `  <" K "> )  =  1
3635oveq2i 6661 . . . . . . . . . . . 12  |-  ( (
# `  F )  +  ( # `  <" K "> )
)  =  ( (
# `  F )  +  1 )
3734, 36syl6eq 2672 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  ( F ++  <" K "> ) )  =  ( ( # `  F
)  +  1 ) )
3837oveq2d 6666 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0..^ ( # `  ( F ++  <" K "> ) ) )  =  ( 0..^ ( ( # `  F
)  +  1 ) ) )
3928peano2zd 11485 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( # `  F
)  +  1 )  e.  ZZ )
40 fzoval 12471 . . . . . . . . . . 11  |-  ( ( ( # `  F
)  +  1 )  e.  ZZ  ->  (
0..^ ( ( # `  F )  +  1 ) )  =  ( 0 ... ( ( ( # `  F
)  +  1 )  -  1 ) ) )
4139, 40syl 17 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0..^ ( (
# `  F )  +  1 ) )  =  ( 0 ... ( ( ( # `  F )  +  1 )  -  1 ) ) )
4227nn0cnd 11353 . . . . . . . . . . . 12  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  CC )
43 1cnd 10056 . . . . . . . . . . . 12  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  1  e.  CC )
4442, 43pncand 10393 . . . . . . . . . . 11  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( ( # `  F )  +  1 )  -  1 )  =  ( # `  F
) )
4544oveq2d 6666 . . . . . . . . . 10  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0 ... (
( ( # `  F
)  +  1 )  -  1 ) )  =  ( 0 ... ( # `  F
) ) )
4638, 41, 453eqtrd 2660 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0..^ ( # `  ( F ++  <" K "> ) ) )  =  ( 0 ... ( # `  F
) ) )
4732, 46sseqtr4d 3642 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0 ... (
( # `  F )  -  1 ) ) 
C_  ( 0..^ (
# `  ( F ++  <" K "> ) ) ) )
4847sselda 3603 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  i  e.  ( 0..^ ( # `  ( F ++  <" K "> ) ) ) )
4926, 48ffvelrnd 6360 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  ( ( F ++  <" K "> ) `  i )  e.  RR )
5049rexrd 10089 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  ( ( F ++  <" K "> ) `  i )  e.  RR* )
51 sgncl 30600 . . . . 5  |-  ( ( ( F ++  <" K "> ) `  i
)  e.  RR*  ->  (sgn
`  ( ( F ++ 
<" K "> ) `  i )
)  e.  { -u
1 ,  0 ,  1 } )
5250, 51syl 17 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  (sgn `  (
( F ++  <" K "> ) `  i
) )  e.  { -u 1 ,  0 ,  1 } )
531, 2signswplusg 30632 . . . 4  |-  .+^  =  ( +g  `  W )
54 simpr 477 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  K  e.  RR )
5554rexrd 10089 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  K  e.  RR* )
56 sgncl 30600 . . . . 5  |-  ( K  e.  RR*  ->  (sgn `  K )  e.  { -u 1 ,  0 ,  1 } )
5755, 56syl 17 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  (sgn `  K )  e.  { -u 1 ,  0 ,  1 } )
58 simpr 477 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )
5942, 43npcand 10396 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( ( # `  F )  -  1 )  +  1 )  =  ( # `  F
) )
6059adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  ( ( (
# `  F )  -  1 )  +  1 )  =  (
# `  F )
)
6158, 60eqtrd 2656 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  i  =  (
# `  F )
)
6261fveq2d 6195 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  ( ( F ++ 
<" K "> ) `  i )  =  ( ( F ++ 
<" K "> ) `  ( # `  F
) ) )
636adantr 481 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  F  e. Word  RR )
6454, 21syl 17 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  <" K ">  e. Word  RR )
65 c0ex 10034 . . . . . . . . . . . . 13  |-  0  e.  _V
6665snid 4208 . . . . . . . . . . . 12  |-  0  e.  { 0 }
67 fzo01 12550 . . . . . . . . . . . 12  |-  ( 0..^ 1 )  =  {
0 }
6866, 67eleqtrri 2700 . . . . . . . . . . 11  |-  0  e.  ( 0..^ 1 )
6935oveq2i 6661 . . . . . . . . . . 11  |-  ( 0..^ ( # `  <" K "> )
)  =  ( 0..^ 1 )
7068, 69eleqtrri 2700 . . . . . . . . . 10  |-  0  e.  ( 0..^ ( # `  <" K "> ) )
7170a1i 11 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  0  e.  ( 0..^ ( # `  <" K "> )
) )
72 ccatval3 13363 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  <" K ">  e. Word  RR  /\  0  e.  ( 0..^ ( # `  <" K "> ) ) )  -> 
( ( F ++  <" K "> ) `  ( 0  +  (
# `  F )
) )  =  (
<" K "> `  0 ) )
7363, 64, 71, 72syl3anc 1326 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( F ++  <" K "> ) `  ( 0  +  (
# `  F )
) )  =  (
<" K "> `  0 ) )
7442addid2d 10237 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0  +  (
# `  F )
)  =  ( # `  F ) )
7574fveq2d 6195 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( F ++  <" K "> ) `  ( 0  +  (
# `  F )
) )  =  ( ( F ++  <" K "> ) `  ( # `
 F ) ) )
76 s1fv 13390 . . . . . . . . 9  |-  ( K  e.  RR  ->  ( <" K "> `  0 )  =  K )
7754, 76syl 17 . . . . . . . 8  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( <" K "> `  0 )  =  K )
7873, 75, 773eqtr3d 2664 . . . . . . 7  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( F ++  <" K "> ) `  ( # `  F
) )  =  K )
7978adantr 481 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  ( ( F ++ 
<" K "> ) `  ( # `  F
) )  =  K )
8062, 79eqtrd 2656 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  ( ( F ++ 
<" K "> ) `  i )  =  K )
8180fveq2d 6195 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  =  ( ( ( # `  F
)  -  1 )  +  1 ) )  ->  (sgn `  (
( F ++  <" K "> ) `  i
) )  =  (sgn
`  K ) )
823, 5, 20, 52, 53, 57, 81gsumnunsn 30615 . . 3  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( W  gsumg  ( i  e.  ( 0 ... ( ( ( # `  F
)  -  1 )  +  1 ) ) 
|->  (sgn `  ( ( F ++  <" K "> ) `  i ) ) ) )  =  ( ( W  gsumg  ( i  e.  ( 0 ... ( ( # `  F
)  -  1 ) )  |->  (sgn `  (
( F ++  <" K "> ) `  i
) ) ) ) 
.+^  (sgn `  K )
) )
8359oveq2d 6666 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( 0 ... (
( ( # `  F
)  -  1 )  +  1 ) )  =  ( 0 ... ( # `  F
) ) )
8483mpteq1d 4738 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( i  e.  ( 0 ... ( ( ( # `  F
)  -  1 )  +  1 ) ) 
|->  (sgn `  ( ( F ++  <" K "> ) `  i ) ) )  =  ( i  e.  ( 0 ... ( # `  F
) )  |->  (sgn `  ( ( F ++  <" K "> ) `  i ) ) ) )
8584oveq2d 6666 . . 3  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( W  gsumg  ( i  e.  ( 0 ... ( ( ( # `  F
)  -  1 )  +  1 ) ) 
|->  (sgn `  ( ( F ++  <" K "> ) `  i ) ) ) )  =  ( W  gsumg  ( i  e.  ( 0 ... ( # `  F ) )  |->  (sgn
`  ( ( F ++ 
<" K "> ) `  i )
) ) ) )
8663adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  F  e. Word  RR )
8764adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  <" K ">  e. Word  RR )
8830eleq2d 2687 . . . . . . . . 9  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( i  e.  ( 0..^ ( # `  F
) )  <->  i  e.  ( 0 ... (
( # `  F )  -  1 ) ) ) )
8988biimpar 502 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  i  e.  ( 0..^ ( # `  F
) ) )
90 ccatval1 13361 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  <" K ">  e. Word  RR  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" K "> ) `  i )  =  ( F `  i ) )
9186, 87, 89, 90syl3anc 1326 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  ( ( F ++  <" K "> ) `  i )  =  ( F `  i ) )
9291fveq2d 6195 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  K  e.  RR )  /\  i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) )  ->  (sgn `  (
( F ++  <" K "> ) `  i
) )  =  (sgn
`  ( F `  i ) ) )
9392mpteq2dva 4744 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) 
|->  (sgn `  ( ( F ++  <" K "> ) `  i ) ) )  =  ( i  e.  ( 0 ... ( ( # `  F )  -  1 ) )  |->  (sgn `  ( F `  i ) ) ) )
9493oveq2d 6666 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( W  gsumg  ( i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) 
|->  (sgn `  ( ( F ++  <" K "> ) `  i ) ) ) )  =  ( W  gsumg  ( i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) 
|->  (sgn `  ( F `  i ) ) ) ) )
9594oveq1d 6665 . . 3  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( W  gsumg  ( i  e.  ( 0 ... ( ( # `  F
)  -  1 ) )  |->  (sgn `  (
( F ++  <" K "> ) `  i
) ) ) ) 
.+^  (sgn `  K )
)  =  ( ( W  gsumg  ( i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) 
|->  (sgn `  ( F `  i ) ) ) )  .+^  (sgn `  K
) ) )
9682, 85, 953eqtr3d 2664 . 2  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( W  gsumg  ( i  e.  ( 0 ... ( # `  F ) )  |->  (sgn
`  ( ( F ++ 
<" K "> ) `  i )
) ) )  =  ( ( W  gsumg  ( i  e.  ( 0 ... ( ( # `  F
)  -  1 ) )  |->  (sgn `  ( F `  i )
) ) )  .+^  (sgn `  K ) ) )
97 eqidd 2623 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  =  ( # `  F ) )
9897olcd 408 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( # `  F
)  e.  ( 0..^ ( # `  F
) )  \/  ( # `
 F )  =  ( # `  F
) ) )
9927, 19syl6eleq 2711 . . . . . 6  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  ( ZZ>= ` 
0 ) )
100 fzosplitsni 12579 . . . . . 6  |-  ( (
# `  F )  e.  ( ZZ>= `  0 )  ->  ( ( # `  F
)  e.  ( 0..^ ( ( # `  F
)  +  1 ) )  <->  ( ( # `  F )  e.  ( 0..^ ( # `  F
) )  \/  ( # `
 F )  =  ( # `  F
) ) ) )
10199, 100syl 17 . . . . 5  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( # `  F
)  e.  ( 0..^ ( ( # `  F
)  +  1 ) )  <->  ( ( # `  F )  e.  ( 0..^ ( # `  F
) )  \/  ( # `
 F )  =  ( # `  F
) ) ) )
10298, 101mpbird 247 . . . 4  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  ( 0..^ ( ( # `  F
)  +  1 ) ) )
103102, 38eleqtrrd 2704 . . 3  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( # `  F
)  e.  ( 0..^ ( # `  ( F ++  <" K "> ) ) ) )
104 signsv.t . . . 4  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
105 signsv.v . . . 4  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
1061, 2, 104, 105signstfval 30641 . . 3  |-  ( ( ( F ++  <" K "> )  e. Word  RR  /\  ( # `  F
)  e.  ( 0..^ ( # `  ( F ++  <" K "> ) ) ) )  ->  ( ( T `
 ( F ++  <" K "> )
) `  ( # `  F
) )  =  ( W  gsumg  ( i  e.  ( 0 ... ( # `  F ) )  |->  (sgn
`  ( ( F ++ 
<" K "> ) `  i )
) ) ) )
10723, 103, 106syl2anc 693 . 2  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( T `  ( F ++  <" K "> ) ) `  ( # `  F ) )  =  ( W 
gsumg  ( i  e.  ( 0 ... ( # `  F ) )  |->  (sgn
`  ( ( F ++ 
<" K "> ) `  i )
) ) ) )
108 fzo0end 12560 . . . . . 6  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
10915, 108syl 17 . . . . 5  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )
1101, 2, 104, 105signstfval 30641 . . . . 5  |-  ( ( F  e. Word  RR  /\  ( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )  ->  (
( T `  F
) `  ( ( # `
 F )  - 
1 ) )  =  ( W  gsumg  ( i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) 
|->  (sgn `  ( F `  i ) ) ) ) )
1116, 109, 110syl2anc 693 . . . 4  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( ( T `  F ) `  (
( # `  F )  -  1 ) )  =  ( W  gsumg  ( i  e.  ( 0 ... ( ( # `  F
)  -  1 ) )  |->  (sgn `  ( F `  i )
) ) ) )
112111adantr 481 . . 3  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( T `  F ) `  (
( # `  F )  -  1 ) )  =  ( W  gsumg  ( i  e.  ( 0 ... ( ( # `  F
)  -  1 ) )  |->  (sgn `  ( F `  i )
) ) ) )
113112oveq1d 6665 . 2  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( ( T `
 F ) `  ( ( # `  F
)  -  1 ) )  .+^  (sgn `  K
) )  =  ( ( W  gsumg  ( i  e.  ( 0 ... ( (
# `  F )  -  1 ) ) 
|->  (sgn `  ( F `  i ) ) ) )  .+^  (sgn `  K
) ) )
11496, 107, 1133eqtr4d 2666 1  |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( T `  ( F ++  <" K "> ) ) `  ( # `  F ) )  =  ( ( ( T `  F
) `  ( ( # `
 F )  - 
1 ) )  .+^  (sgn `  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-sgn 13827  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  signsvtn0  30647  signstfvneq0  30649  signstfveq0  30654  signsvfn  30659
  Copyright terms: Public domain W3C validator