MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymul Structured version   Visualization version   Unicode version

Theorem plymul 23974
Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plymul.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plymul  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, y, F    x, S, y    x, G, y    ph, x, y

Proof of Theorem plymul
Dummy variables  k  m  n  z  a 
b  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 elply2 23952 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. m  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
32simprbi 480 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
41, 3syl 17 . 2  |-  ( ph  ->  E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
5 plyadd.2 . . 3  |-  ( ph  ->  G  e.  (Poly `  S ) )
6 elply2 23952 . . . 4  |-  ( G  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
76simprbi 480 . . 3  |-  ( G  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
85, 7syl 17 . 2  |-  ( ph  ->  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
9 reeanv 3107 . . 3  |-  ( E. m  e.  NN0  E. n  e.  NN0  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  <-> 
( E. m  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
10 reeanv 3107 . . . . 5  |-  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) E. b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  <->  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
11 simp1l 1085 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ph )
1211, 1syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  e.  (Poly `  S ) )
1311, 5syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  e.  (Poly `  S ) )
14 plyadd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
1511, 14sylan 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( m  e.  NN0  /\  n  e.  NN0 )
)  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
16 simp1rl 1126 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  m  e.  NN0 )
17 simp1rr 1127 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  n  e.  NN0 )
18 simp2l 1087 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )
19 simp2r 1088 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )
20 simp3ll 1132 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 } )
21 simp3rl 1134 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 } )
22 simp3lr 1133 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
23 oveq1 6657 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
z ^ k )  =  ( w ^
k ) )
2423oveq2d 6666 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( a `
 k )  x.  ( w ^ k
) ) )
2524sumeq2sdv 14435 . . . . . . . . . . 11  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( w ^ k ) ) )
26 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
a `  k )  =  ( a `  j ) )
27 oveq2 6658 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
w ^ k )  =  ( w ^
j ) )
2826, 27oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( a `  k
)  x.  ( w ^ k ) )  =  ( ( a `
 j )  x.  ( w ^ j
) ) )
2928cbvsumv 14426 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) )
3025, 29syl6eq 2672 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3130cbvmptv 4750 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3222, 31syl6eq 2672 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
33 simp3rr 1135 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )
3423oveq2d 6666 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( b `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( w ^ k
) ) )
3534sumeq2sdv 14435 . . . . . . . . . . 11  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( w ^ k ) ) )
36 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
3736, 27oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( b `  k
)  x.  ( w ^ k ) )  =  ( ( b `
 j )  x.  ( w ^ j
) ) )
3837cbvsumv 14426 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) )
3935, 38syl6eq 2672 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4039cbvmptv 4750 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4133, 40syl6eq 2672 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) ) )
42 plymul.4 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
4311, 42sylan 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( m  e.  NN0  /\  n  e.  NN0 )
)  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
4412, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41, 43plymullem 23972 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
45443expia 1267 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( F  oF  x.  G )  e.  (Poly `  S )
) )
4645rexlimdvva 3038 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN0  /\  n  e. 
NN0 ) )  -> 
( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( F  oF  x.  G )  e.  (Poly `  S )
) )
4710, 46syl5bir 233 . . . 4  |-  ( (
ph  /\  ( m  e.  NN0  /\  n  e. 
NN0 ) )  -> 
( ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
) )
4847rexlimdvva 3038 . . 3  |-  ( ph  ->  ( E. m  e. 
NN0  E. n  e.  NN0  ( E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
) )
499, 48syl5bir 233 . 2  |-  ( ph  ->  ( ( E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
) )
504, 8, 49mp2and 715 1  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    u. cun 3572    C_ wss 3574   {csn 4177    |-> cmpt 4729   "cima 5117   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ply 23944
This theorem is referenced by:  plysub  23975  plymulcl  23977  plyco  23997  plydivlem2  24049  plydivlem4  24051  plydiveu  24053  plymulx0  30624  mpaaeu  37720  rngunsnply  37743
  Copyright terms: Public domain W3C validator