MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqd Structured version   Visualization version   Unicode version

Theorem sqeqd 13906
Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
sqeqd.1  |-  ( ph  ->  A  e.  CC )
sqeqd.2  |-  ( ph  ->  B  e.  CC )
sqeqd.3  |-  ( ph  ->  ( A ^ 2 )  =  ( B ^ 2 ) )
sqeqd.4  |-  ( ph  ->  0  <_  ( Re `  A ) )
sqeqd.5  |-  ( ph  ->  0  <_  ( Re `  B ) )
sqeqd.6  |-  ( (
ph  /\  ( Re `  A )  =  0  /\  ( Re `  B )  =  0 )  ->  A  =  B )
Assertion
Ref Expression
sqeqd  |-  ( ph  ->  A  =  B )

Proof of Theorem sqeqd
StepHypRef Expression
1 sqeqd.3 . . . . 5  |-  ( ph  ->  ( A ^ 2 )  =  ( B ^ 2 ) )
2 sqeqd.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
3 sqeqd.2 . . . . . 6  |-  ( ph  ->  B  e.  CC )
4 sqeqor 12978 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )
52, 3, 4syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )
61, 5mpbid 222 . . . 4  |-  ( ph  ->  ( A  =  B  \/  A  =  -u B ) )
76ord 392 . . 3  |-  ( ph  ->  ( -.  A  =  B  ->  A  =  -u B ) )
8 simpl 473 . . . . 5  |-  ( (
ph  /\  A  =  -u B )  ->  ph )
9 fveq2 6191 . . . . . . 7  |-  ( A  =  -u B  ->  (
Re `  A )  =  ( Re `  -u B ) )
10 reneg 13865 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Re `  -u B )  =  -u ( Re `  B ) )
113, 10syl 17 . . . . . . 7  |-  ( ph  ->  ( Re `  -u B
)  =  -u (
Re `  B )
)
129, 11sylan9eqr 2678 . . . . . 6  |-  ( (
ph  /\  A  =  -u B )  ->  (
Re `  A )  =  -u ( Re `  B ) )
13 sqeqd.4 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( Re `  A ) )
1413adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =  -u B )  ->  0  <_  ( Re `  A
) )
1514, 12breqtrd 4679 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  -u B )  ->  0  <_ 
-u ( Re `  B ) )
163adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =  -u B )  ->  B  e.  CC )
17 recl 13850 . . . . . . . . . . . 12  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1816, 17syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =  -u B )  ->  (
Re `  B )  e.  RR )
1918le0neg1d 10599 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  -u B )  ->  (
( Re `  B
)  <_  0  <->  0  <_  -u ( Re `  B ) ) )
2015, 19mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  A  =  -u B )  ->  (
Re `  B )  <_  0 )
21 sqeqd.5 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( Re `  B ) )
2221adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  =  -u B )  ->  0  <_  ( Re `  B
) )
23 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
24 letri3 10123 . . . . . . . . . 10  |-  ( ( ( Re `  B
)  e.  RR  /\  0  e.  RR )  ->  ( ( Re `  B )  =  0  <-> 
( ( Re `  B )  <_  0  /\  0  <_  ( Re
`  B ) ) ) )
2518, 23, 24sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  A  =  -u B )  ->  (
( Re `  B
)  =  0  <->  (
( Re `  B
)  <_  0  /\  0  <_  ( Re `  B ) ) ) )
2620, 22, 25mpbir2and 957 . . . . . . . 8  |-  ( (
ph  /\  A  =  -u B )  ->  (
Re `  B )  =  0 )
2726negeqd 10275 . . . . . . 7  |-  ( (
ph  /\  A  =  -u B )  ->  -u (
Re `  B )  =  -u 0 )
28 neg0 10327 . . . . . . 7  |-  -u 0  =  0
2927, 28syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  A  =  -u B )  ->  -u (
Re `  B )  =  0 )
3012, 29eqtrd 2656 . . . . 5  |-  ( (
ph  /\  A  =  -u B )  ->  (
Re `  A )  =  0 )
31 sqeqd.6 . . . . 5  |-  ( (
ph  /\  ( Re `  A )  =  0  /\  ( Re `  B )  =  0 )  ->  A  =  B )
328, 30, 26, 31syl3anc 1326 . . . 4  |-  ( (
ph  /\  A  =  -u B )  ->  A  =  B )
3332ex 450 . . 3  |-  ( ph  ->  ( A  =  -u B  ->  A  =  B ) )
347, 33syld 47 . 2  |-  ( ph  ->  ( -.  A  =  B  ->  A  =  B ) )
3534pm2.18d 124 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    <_ cle 10075   -ucneg 10267   2c2 11070   ^cexp 12860   Recre 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator