Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem13 Structured version   Visualization version   Unicode version

Theorem cvmliftlem13 31278
Description: Lemma for cvmlift 31281. The initial value of  K is  P because  Q ( 1 ) is a subset of  K which takes value  P at  0. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem.k  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
Assertion
Ref Expression
cvmliftlem13  |-  ( ph  ->  ( K `  0
)  =  P )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    P, b,
k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    K( x, z, v, u, j, k, m, s, b)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem13
StepHypRef Expression
1 cvmliftlem.1 . . . . . . 7  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
2 cvmliftlem.b . . . . . . 7  |-  B  = 
U. C
3 cvmliftlem.x . . . . . . 7  |-  X  = 
U. J
4 cvmliftlem.f . . . . . . 7  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmliftlem.g . . . . . . 7  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cvmliftlem.p . . . . . . 7  |-  ( ph  ->  P  e.  B )
7 cvmliftlem.e . . . . . . 7  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
8 cvmliftlem.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
9 cvmliftlem.t . . . . . . 7  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
10 cvmliftlem.a . . . . . . 7  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
11 cvmliftlem.l . . . . . . 7  |-  L  =  ( topGen `  ran  (,) )
12 cvmliftlem.q . . . . . . 7  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
13 cvmliftlem.k . . . . . . 7  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 31277 . . . . . 6  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
1514simpld 475 . . . . 5  |-  ( ph  ->  K  e.  ( II 
Cn  C ) )
16 iiuni 22684 . . . . . 6  |-  ( 0 [,] 1 )  = 
U. II
1716, 2cnf 21050 . . . . 5  |-  ( K  e.  ( II  Cn  C )  ->  K : ( 0 [,] 1 ) --> B )
1815, 17syl 17 . . . 4  |-  ( ph  ->  K : ( 0 [,] 1 ) --> B )
19 ffun 6048 . . . 4  |-  ( K : ( 0 [,] 1 ) --> B  ->  Fun  K )
2018, 19syl 17 . . 3  |-  ( ph  ->  Fun  K )
21 nnuz 11723 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
228, 21syl6eleq 2711 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
23 eluzfz1 12348 . . . . . 6  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
2422, 23syl 17 . . . . 5  |-  ( ph  ->  1  e.  ( 1 ... N ) )
25 fveq2 6191 . . . . . 6  |-  ( k  =  1  ->  ( Q `  k )  =  ( Q ` 
1 ) )
2625ssiun2s 4564 . . . . 5  |-  ( 1  e.  ( 1 ... N )  ->  ( Q `  1 )  C_ 
U_ k  e.  ( 1 ... N ) ( Q `  k
) )
2724, 26syl 17 . . . 4  |-  ( ph  ->  ( Q `  1
)  C_  U_ k  e.  ( 1 ... N
) ( Q `  k ) )
2827, 13syl6sseqr 3652 . . 3  |-  ( ph  ->  ( Q `  1
)  C_  K )
29 0xr 10086 . . . . . . 7  |-  0  e.  RR*
3029a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  RR* )
318nnrecred 11066 . . . . . . 7  |-  ( ph  ->  ( 1  /  N
)  e.  RR )
3231rexrd 10089 . . . . . 6  |-  ( ph  ->  ( 1  /  N
)  e.  RR* )
33 1red 10055 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
34 0le1 10551 . . . . . . . 8  |-  0  <_  1
3534a1i 11 . . . . . . 7  |-  ( ph  ->  0  <_  1 )
368nnred 11035 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
378nngt0d 11064 . . . . . . 7  |-  ( ph  ->  0  <  N )
38 divge0 10892 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( 1  /  N ) )
3933, 35, 36, 37, 38syl22anc 1327 . . . . . 6  |-  ( ph  ->  0  <_  ( 1  /  N ) )
40 lbicc2 12288 . . . . . 6  |-  ( ( 0  e.  RR*  /\  (
1  /  N )  e.  RR*  /\  0  <_  ( 1  /  N
) )  ->  0  e.  ( 0 [,] (
1  /  N ) ) )
4130, 32, 39, 40syl3anc 1326 . . . . 5  |-  ( ph  ->  0  e.  ( 0 [,] ( 1  /  N ) ) )
42 1m1e0 11089 . . . . . . . 8  |-  ( 1  -  1 )  =  0
4342oveq1i 6660 . . . . . . 7  |-  ( ( 1  -  1 )  /  N )  =  ( 0  /  N
)
448nncnd 11036 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
458nnne0d 11065 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
4644, 45div0d 10800 . . . . . . 7  |-  ( ph  ->  ( 0  /  N
)  =  0 )
4743, 46syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( ( 1  -  1 )  /  N
)  =  0 )
4847oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( 1  -  1 )  /  N ) [,] (
1  /  N ) )  =  ( 0 [,] ( 1  /  N ) ) )
4941, 48eleqtrrd 2704 . . . 4  |-  ( ph  ->  0  e.  ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) )
50 eqid 2622 . . . . . . . 8  |-  ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) )  =  ( ( ( 1  -  1 )  /  N ) [,] (
1  /  N ) )
51 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  1  e.  ( 1 ... N
) )
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 50cvmliftlem7 31273 . . . . . . . 8  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  (
( Q `  (
1  -  1 ) ) `  ( ( 1  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( 1  -  1 )  /  N
) ) } ) )
531, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 50, 51, 52cvmliftlem6 31272 . . . . . . 7  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  (
( Q `  1
) : ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) --> B  /\  ( F  o.  ( Q `  1 ) )  =  ( G  |`  ( ( ( 1  -  1 )  /  N ) [,] (
1  /  N ) ) ) ) )
5424, 53mpdan 702 . . . . . 6  |-  ( ph  ->  ( ( Q ` 
1 ) : ( ( ( 1  -  1 )  /  N
) [,] ( 1  /  N ) ) --> B  /\  ( F  o.  ( Q ` 
1 ) )  =  ( G  |`  (
( ( 1  -  1 )  /  N
) [,] ( 1  /  N ) ) ) ) )
5554simpld 475 . . . . 5  |-  ( ph  ->  ( Q `  1
) : ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) --> B )
56 fdm 6051 . . . . 5  |-  ( ( Q `  1 ) : ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N
) ) --> B  ->  dom  ( Q `  1
)  =  ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) )
5755, 56syl 17 . . . 4  |-  ( ph  ->  dom  ( Q ` 
1 )  =  ( ( ( 1  -  1 )  /  N
) [,] ( 1  /  N ) ) )
5849, 57eleqtrrd 2704 . . 3  |-  ( ph  ->  0  e.  dom  ( Q `  1 )
)
59 funssfv 6209 . . 3  |-  ( ( Fun  K  /\  ( Q `  1 )  C_  K  /\  0  e. 
dom  ( Q ` 
1 ) )  -> 
( K `  0
)  =  ( ( Q `  1 ) `
 0 ) )
6020, 28, 58, 59syl3anc 1326 . 2  |-  ( ph  ->  ( K `  0
)  =  ( ( Q `  1 ) `
 0 ) )
611, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem9 31275 . . . 4  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  (
( Q `  1
) `  ( (
1  -  1 )  /  N ) )  =  ( ( Q `
 ( 1  -  1 ) ) `  ( ( 1  -  1 )  /  N
) ) )
6224, 61mpdan 702 . . 3  |-  ( ph  ->  ( ( Q ` 
1 ) `  (
( 1  -  1 )  /  N ) )  =  ( ( Q `  ( 1  -  1 ) ) `
 ( ( 1  -  1 )  /  N ) ) )
6347fveq2d 6195 . . 3  |-  ( ph  ->  ( ( Q ` 
1 ) `  (
( 1  -  1 )  /  N ) )  =  ( ( Q `  1 ) `
 0 ) )
6442fveq2i 6194 . . . . . 6  |-  ( Q `
 ( 1  -  1 ) )  =  ( Q `  0
)
651, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem4 31270 . . . . . 6  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
6664, 65eqtri 2644 . . . . 5  |-  ( Q `
 ( 1  -  1 ) )  =  { <. 0 ,  P >. }
6766a1i 11 . . . 4  |-  ( ph  ->  ( Q `  (
1  -  1 ) )  =  { <. 0 ,  P >. } )
6867, 47fveq12d 6197 . . 3  |-  ( ph  ->  ( ( Q `  ( 1  -  1 ) ) `  (
( 1  -  1 )  /  N ) )  =  ( {
<. 0 ,  P >. } `  0 ) )
6962, 63, 683eqtr3d 2664 . 2  |-  ( ph  ->  ( ( Q ` 
1 ) `  0
)  =  ( {
<. 0 ,  P >. } `  0 ) )
70 0nn0 11307 . . 3  |-  0  e.  NN0
71 fvsng 6447 . . 3  |-  ( ( 0  e.  NN0  /\  P  e.  B )  ->  ( { <. 0 ,  P >. } `  0
)  =  P )
7270, 6, 71sylancr 695 . 2  |-  ( ph  ->  ( { <. 0 ,  P >. } `  0
)  =  P )
7360, 69, 723eqtrd 2660 1  |-  ( ph  ->  ( K `  0
)  =  P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   (,)cioo 12175   [,]cicc 12178   ...cfz 12326    seqcseq 12801   ↾t crest 16081   topGenctg 16098    Cn ccn 21028   Homeochmeo 21556   IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031  df-hmeo 21558  df-ii 22680  df-cvm 31238
This theorem is referenced by:  cvmliftlem14  31279
  Copyright terms: Public domain W3C validator