Proof of Theorem subsubm
Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. . . . . . . 8
         |
2 | 1 | submss 17350 |
. . . . . . 7
 SubMnd 
      |
3 | 2 | adantl 482 |
. . . . . 6
  SubMnd  SubMnd  
      |
4 | | subsubm.h |
. . . . . . . 8

↾s   |
5 | 4 | submbas 17355 |
. . . . . . 7
 SubMnd 
      |
6 | 5 | adantr 481 |
. . . . . 6
  SubMnd  SubMnd  
      |
7 | 3, 6 | sseqtr4d 3642 |
. . . . 5
  SubMnd  SubMnd  
  |
8 | | eqid 2622 |
. . . . . . 7
         |
9 | 8 | submss 17350 |
. . . . . 6
 SubMnd 
      |
10 | 9 | adantr 481 |
. . . . 5
  SubMnd  SubMnd  
      |
11 | 7, 10 | sstrd 3613 |
. . . 4
  SubMnd  SubMnd  
      |
12 | | eqid 2622 |
. . . . . . 7
         |
13 | 4, 12 | subm0 17356 |
. . . . . 6
 SubMnd 
          |
14 | 13 | adantr 481 |
. . . . 5
  SubMnd  SubMnd  
          |
15 | | eqid 2622 |
. . . . . . 7
         |
16 | 15 | subm0cl 17352 |
. . . . . 6
 SubMnd 
      |
17 | 16 | adantl 482 |
. . . . 5
  SubMnd  SubMnd  
      |
18 | 14, 17 | eqeltrd 2701 |
. . . 4
  SubMnd  SubMnd  
      |
19 | 4 | oveq1i 6660 |
. . . . . . 7
 ↾s    ↾s 
↾s   |
20 | | ressabs 15939 |
. . . . . . 7
  SubMnd    
↾s 
↾s   ↾s    |
21 | 19, 20 | syl5eq 2668 |
. . . . . 6
  SubMnd    ↾s   ↾s    |
22 | 7, 21 | syldan 487 |
. . . . 5
  SubMnd  SubMnd  
 ↾s   ↾s    |
23 | | eqid 2622 |
. . . . . . 7
 ↾s   ↾s   |
24 | 23 | submmnd 17354 |
. . . . . 6
 SubMnd 
 ↾s    |
25 | 24 | adantl 482 |
. . . . 5
  SubMnd  SubMnd  
 ↾s    |
26 | 22, 25 | eqeltrrd 2702 |
. . . 4
  SubMnd  SubMnd  
 ↾s    |
27 | | submrcl 17346 |
. . . . . 6
 SubMnd 
  |
28 | 27 | adantr 481 |
. . . . 5
  SubMnd  SubMnd  
  |
29 | | eqid 2622 |
. . . . . 6
 ↾s   ↾s   |
30 | 8, 12, 29 | issubm2 17348 |
. . . . 5
 
SubMnd           
↾s      |
31 | 28, 30 | syl 17 |
. . . 4
  SubMnd  SubMnd  
 SubMnd  
         ↾s      |
32 | 11, 18, 26, 31 | mpbir3and 1245 |
. . 3
  SubMnd  SubMnd  
SubMnd    |
33 | 32, 7 | jca 554 |
. 2
  SubMnd  SubMnd  
 SubMnd 
   |
34 | | simprr 796 |
. . . 4
  SubMnd  
SubMnd 
    |
35 | 5 | adantr 481 |
. . . 4
  SubMnd  
SubMnd 
        |
36 | 34, 35 | sseqtrd 3641 |
. . 3
  SubMnd  
SubMnd 
        |
37 | 13 | adantr 481 |
. . . 4
  SubMnd  
SubMnd 
            |
38 | 12 | subm0cl 17352 |
. . . . 5
 SubMnd 
      |
39 | 38 | ad2antrl 764 |
. . . 4
  SubMnd  
SubMnd 
        |
40 | 37, 39 | eqeltrrd 2702 |
. . 3
  SubMnd  
SubMnd 
        |
41 | 21 | adantrl 752 |
. . . 4
  SubMnd  
SubMnd 
   ↾s   ↾s    |
42 | 29 | submmnd 17354 |
. . . . 5
 SubMnd 
 ↾s    |
43 | 42 | ad2antrl 764 |
. . . 4
  SubMnd  
SubMnd 
   ↾s    |
44 | 41, 43 | eqeltrd 2701 |
. . 3
  SubMnd  
SubMnd 
   ↾s    |
45 | 4 | submmnd 17354 |
. . . . 5
 SubMnd 
  |
46 | 45 | adantr 481 |
. . . 4
  SubMnd  
SubMnd 
    |
47 | 1, 15, 23 | issubm2 17348 |
. . . 4
 
SubMnd           
↾s      |
48 | 46, 47 | syl 17 |
. . 3
  SubMnd  
SubMnd 
  
SubMnd           
↾s      |
49 | 36, 40, 44, 48 | mpbir3and 1245 |
. 2
  SubMnd  
SubMnd 
  SubMnd    |
50 | 33, 49 | impbida 877 |
1
 SubMnd 
 SubMnd   SubMnd      |