Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmlemALT Structured version   Visualization version   Unicode version

Theorem amgmlemALT 42549
Description: Alternate proof of amgmlem 24716 using amgmwlem 42548. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Kunhao Zheng, 20-Jun-2021.)
Hypotheses
Ref Expression
amgmlemALT.0  |-  M  =  (mulGrp ` fld )
amgmlemALT.1  |-  ( ph  ->  A  e.  Fin )
amgmlemALT.2  |-  ( ph  ->  A  =/=  (/) )
amgmlemALT.3  |-  ( ph  ->  F : A --> RR+ )
Assertion
Ref Expression
amgmlemALT  |-  ( ph  ->  ( ( M  gsumg  F )  ^c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) )

Proof of Theorem amgmlemALT
Dummy variables  x  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmlemALT.0 . . 3  |-  M  =  (mulGrp ` fld )
2 amgmlemALT.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 amgmlemALT.2 . . 3  |-  ( ph  ->  A  =/=  (/) )
4 amgmlemALT.3 . . 3  |-  ( ph  ->  F : A --> RR+ )
5 hashnncl 13157 . . . . . . . 8  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  A  =/=  (/) ) )
62, 5syl 17 . . . . . . 7  |-  ( ph  ->  ( ( # `  A
)  e.  NN  <->  A  =/=  (/) ) )
73, 6mpbird 247 . . . . . 6  |-  ( ph  ->  ( # `  A
)  e.  NN )
87nnrpd 11870 . . . . 5  |-  ( ph  ->  ( # `  A
)  e.  RR+ )
98rpreccld 11882 . . . 4  |-  ( ph  ->  ( 1  /  ( # `
 A ) )  e.  RR+ )
10 fconst6g 6094 . . . 4  |-  ( ( 1  /  ( # `  A ) )  e.  RR+  ->  ( A  X.  { ( 1  / 
( # `  A ) ) } ) : A --> RR+ )
119, 10syl 17 . . 3  |-  ( ph  ->  ( A  X.  {
( 1  /  ( # `
 A ) ) } ) : A --> RR+ )
12 fconstmpt 5163 . . . . . 6  |-  ( A  X.  { ( 1  /  ( # `  A
) ) } )  =  ( k  e.  A  |->  ( 1  / 
( # `  A ) ) )
1312a1i 11 . . . . 5  |-  ( ph  ->  ( A  X.  {
( 1  /  ( # `
 A ) ) } )  =  ( k  e.  A  |->  ( 1  /  ( # `  A ) ) ) )
1413oveq2d 6666 . . . 4  |-  ( ph  ->  (fld 
gsumg  ( A  X.  { ( 1  /  ( # `  A ) ) } ) )  =  (fld  gsumg  ( k  e.  A  |->  ( 1  /  ( # `  A
) ) ) ) )
157nnrecred 11066 . . . . . 6  |-  ( ph  ->  ( 1  /  ( # `
 A ) )  e.  RR )
1615recnd 10068 . . . . 5  |-  ( ph  ->  ( 1  /  ( # `
 A ) )  e.  CC )
17 simpl 473 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( 1  /  ( # `
 A ) )  e.  CC )  ->  A  e.  Fin )
18 simplr 792 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  ( 1  /  ( # `
 A ) )  e.  CC )  /\  k  e.  A )  ->  ( 1  /  ( # `
 A ) )  e.  CC )
1917, 18gsumfsum 19813 . . . . 5  |-  ( ( A  e.  Fin  /\  ( 1  /  ( # `
 A ) )  e.  CC )  -> 
(fld  gsumg  ( k  e.  A  |->  ( 1  /  ( # `  A ) ) ) )  =  sum_ k  e.  A  ( 1  /  ( # `  A
) ) )
202, 16, 19syl2anc 693 . . . 4  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( 1  /  ( # `
 A ) ) ) )  =  sum_ k  e.  A  (
1  /  ( # `  A ) ) )
21 fsumconst 14522 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( 1  /  ( # `
 A ) )  e.  CC )  ->  sum_ k  e.  A  ( 1  /  ( # `  A ) )  =  ( ( # `  A
)  x.  ( 1  /  ( # `  A
) ) ) )
222, 16, 21syl2anc 693 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  ( 1  /  ( # `
 A ) )  =  ( ( # `  A )  x.  (
1  /  ( # `  A ) ) ) )
237nncnd 11036 . . . . . 6  |-  ( ph  ->  ( # `  A
)  e.  CC )
247nnne0d 11065 . . . . . 6  |-  ( ph  ->  ( # `  A
)  =/=  0 )
2523, 24recidd 10796 . . . . 5  |-  ( ph  ->  ( ( # `  A
)  x.  ( 1  /  ( # `  A
) ) )  =  1 )
2622, 25eqtrd 2656 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  ( 1  /  ( # `
 A ) )  =  1 )
2714, 20, 263eqtrd 2660 . . 3  |-  ( ph  ->  (fld 
gsumg  ( A  X.  { ( 1  /  ( # `  A ) ) } ) )  =  1 )
281, 2, 3, 4, 11, 27amgmwlem 42548 . 2  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  ( A  X.  { ( 1  /  ( # `  A
) ) } ) ) )  <_  (fld  gsumg  ( F  oF  x.  ( A  X.  { ( 1  / 
( # `  A ) ) } ) ) ) )
29 rpssre 11843 . . . . . 6  |-  RR+  C_  RR
30 ax-resscn 9993 . . . . . 6  |-  RR  C_  CC
3129, 30sstri 3612 . . . . 5  |-  RR+  C_  CC
32 eqid 2622 . . . . . 6  |-  ( Ms  RR+ )  =  ( Ms  RR+ )
33 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
341, 33mgpbas 18495 . . . . . 6  |-  CC  =  ( Base `  M )
3532, 34ressbas2 15931 . . . . 5  |-  ( RR+  C_  CC  ->  RR+  =  (
Base `  ( Ms  RR+ )
) )
3631, 35ax-mp 5 . . . 4  |-  RR+  =  ( Base `  ( Ms  RR+ )
)
37 cnfld1 19771 . . . . . 6  |-  1  =  ( 1r ` fld )
381, 37ringidval 18503 . . . . 5  |-  1  =  ( 0g `  M )
391oveq1i 6660 . . . . . . . . . 10  |-  ( Ms  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
4039rpmsubg 19810 . . . . . . . . 9  |-  RR+  e.  (SubGrp `  ( Ms  ( CC 
\  { 0 } ) ) )
41 subgsubm 17616 . . . . . . . . 9  |-  ( RR+  e.  (SubGrp `  ( Ms  ( CC  \  { 0 } ) ) )  ->  RR+ 
e.  (SubMnd `  ( Ms  ( CC  \  { 0 } ) ) ) )
4240, 41ax-mp 5 . . . . . . . 8  |-  RR+  e.  (SubMnd `  ( Ms  ( CC 
\  { 0 } ) ) )
43 cnring 19768 . . . . . . . . . 10  |-fld  e.  Ring
44 cnfld0 19770 . . . . . . . . . . . 12  |-  0  =  ( 0g ` fld )
45 cndrng 19775 . . . . . . . . . . . 12  |-fld  e.  DivRing
4633, 44, 45drngui 18753 . . . . . . . . . . 11  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
4746, 1unitsubm 18670 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  M )
)
4843, 47ax-mp 5 . . . . . . . . 9  |-  ( CC 
\  { 0 } )  e.  (SubMnd `  M )
49 eqid 2622 . . . . . . . . . 10  |-  ( Ms  ( CC  \  { 0 } ) )  =  ( Ms  ( CC  \  { 0 } ) )
5049subsubm 17357 . . . . . . . . 9  |-  ( ( CC  \  { 0 } )  e.  (SubMnd `  M )  ->  ( RR+  e.  (SubMnd `  ( Ms  ( CC  \  { 0 } ) ) )  <-> 
( RR+  e.  (SubMnd `  M )  /\  RR+  C_  ( CC  \  { 0 } ) ) ) )
5148, 50ax-mp 5 . . . . . . . 8  |-  ( RR+  e.  (SubMnd `  ( Ms  ( CC  \  { 0 } ) ) )  <->  ( RR+  e.  (SubMnd `  M )  /\  RR+  C_  ( CC  \  { 0 } ) ) )
5242, 51mpbi 220 . . . . . . 7  |-  ( RR+  e.  (SubMnd `  M )  /\  RR+  C_  ( CC  \  { 0 } ) )
5352simpli 474 . . . . . 6  |-  RR+  e.  (SubMnd `  M )
54 eqid 2622 . . . . . . 7  |-  ( 0g
`  M )  =  ( 0g `  M
)
5532, 54subm0 17356 . . . . . 6  |-  ( RR+  e.  (SubMnd `  M )  ->  ( 0g `  M
)  =  ( 0g
`  ( Ms  RR+ )
) )
5653, 55ax-mp 5 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  ( Ms  RR+ ) )
5738, 56eqtri 2644 . . . 4  |-  1  =  ( 0g `  ( Ms  RR+ ) )
58 cncrng 19767 . . . . . 6  |-fld  e.  CRing
591crngmgp 18555 . . . . . 6  |-  (fld  e.  CRing  ->  M  e. CMnd )
6058, 59ax-mp 5 . . . . 5  |-  M  e. CMnd
6132submmnd 17354 . . . . . 6  |-  ( RR+  e.  (SubMnd `  M )  ->  ( Ms  RR+ )  e.  Mnd )
6253, 61mp1i 13 . . . . 5  |-  ( ph  ->  ( Ms  RR+ )  e.  Mnd )
6332subcmn 18242 . . . . 5  |-  ( ( M  e. CMnd  /\  ( Ms  RR+ )  e.  Mnd )  ->  ( Ms  RR+ )  e. CMnd )
6460, 62, 63sylancr 695 . . . 4  |-  ( ph  ->  ( Ms  RR+ )  e. CMnd )
65 reex 10027 . . . . . . . 8  |-  RR  e.  _V
6665, 29ssexi 4803 . . . . . . 7  |-  RR+  e.  _V
67 cnfldmul 19752 . . . . . . . . 9  |-  x.  =  ( .r ` fld )
681, 67mgpplusg 18493 . . . . . . . 8  |-  x.  =  ( +g  `  M )
6932, 68ressplusg 15993 . . . . . . 7  |-  ( RR+  e.  _V  ->  x.  =  ( +g  `  ( Ms  RR+ ) ) )
7066, 69ax-mp 5 . . . . . 6  |-  x.  =  ( +g  `  ( Ms  RR+ ) )
71 eqid 2622 . . . . . . . 8  |-  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
7271rpmsubg 19810 . . . . . . 7  |-  RR+  e.  (SubGrp `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
731oveq1i 6660 . . . . . . . . 9  |-  ( Ms  RR+ )  =  ( (mulGrp ` fld )s  RR+ )
74 cnex 10017 . . . . . . . . . . 11  |-  CC  e.  _V
75 difss 3737 . . . . . . . . . . 11  |-  ( CC 
\  { 0 } )  C_  CC
7674, 75ssexi 4803 . . . . . . . . . 10  |-  ( CC 
\  { 0 } )  e.  _V
77 rpcndif0 11851 . . . . . . . . . . 11  |-  ( w  e.  RR+  ->  w  e.  ( CC  \  {
0 } ) )
7877ssriv 3607 . . . . . . . . . 10  |-  RR+  C_  ( CC  \  { 0 } )
79 ressabs 15939 . . . . . . . . . 10  |-  ( ( ( CC  \  {
0 } )  e. 
_V  /\  RR+  C_  ( CC  \  { 0 } ) )  ->  (
( (mulGrp ` fld )s  ( CC  \  { 0 } ) )s 
RR+ )  =  ( (mulGrp ` fld )s  RR+ ) )
8076, 78, 79mp2an 708 . . . . . . . . 9  |-  ( ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )s 
RR+ )  =  ( (mulGrp ` fld )s  RR+ )
8173, 80eqtr4i 2647 . . . . . . . 8  |-  ( Ms  RR+ )  =  ( (
(mulGrp ` fld )s  ( CC  \  { 0 } ) )s 
RR+ )
8281subggrp 17597 . . . . . . 7  |-  ( RR+  e.  (SubGrp `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  ->  ( Ms  RR+ )  e.  Grp )
8372, 82mp1i 13 . . . . . 6  |-  ( ph  ->  ( Ms  RR+ )  e.  Grp )
84 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  RR+ )  ->  k  e.  RR+ )
8515adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  RR+ )  ->  ( 1  /  ( # `  A
) )  e.  RR )
8684, 85rpcxpcld 24476 . . . . . . 7  |-  ( (
ph  /\  k  e.  RR+ )  ->  ( k  ^c  ( 1  /  ( # `  A
) ) )  e.  RR+ )
87 eqid 2622 . . . . . . 7  |-  ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) )  =  ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) )
8886, 87fmptd 6385 . . . . . 6  |-  ( ph  ->  ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) : RR+ --> RR+ )
89 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  x  e.  RR+ )
9089rprege0d 11879 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
x  e.  RR  /\  0  <_  x ) )
91 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  y  e.  RR+ )
9291rprege0d 11879 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
y  e.  RR  /\  0  <_  y ) )
9316adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
1  /  ( # `  A ) )  e.  CC )
94 mulcxp 24431 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )  /\  ( 1  /  ( # `
 A ) )  e.  CC )  -> 
( ( x  x.  y )  ^c 
( 1  /  ( # `
 A ) ) )  =  ( ( x  ^c  ( 1  /  ( # `  A ) ) )  x.  ( y  ^c  ( 1  / 
( # `  A ) ) ) ) )
9590, 92, 93, 94syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
( x  x.  y
)  ^c  ( 1  /  ( # `  A ) ) )  =  ( ( x  ^c  ( 1  /  ( # `  A
) ) )  x.  ( y  ^c 
( 1  /  ( # `
 A ) ) ) ) )
96 rpmulcl 11855 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  y  e.  RR+ )  ->  (
x  x.  y )  e.  RR+ )
9796adantl 482 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
x  x.  y )  e.  RR+ )
98 oveq1 6657 . . . . . . . . 9  |-  ( k  =  ( x  x.  y )  ->  (
k  ^c  ( 1  /  ( # `  A ) ) )  =  ( ( x  x.  y )  ^c  ( 1  / 
( # `  A ) ) ) )
99 ovex 6678 . . . . . . . . 9  |-  ( k  ^c  ( 1  /  ( # `  A
) ) )  e. 
_V
10098, 87, 99fvmpt3i 6287 . . . . . . . 8  |-  ( ( x  x.  y )  e.  RR+  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) ) `
 ( x  x.  y ) )  =  ( ( x  x.  y )  ^c 
( 1  /  ( # `
 A ) ) ) )
10197, 100syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  (
x  x.  y ) )  =  ( ( x  x.  y )  ^c  ( 1  /  ( # `  A
) ) ) )
102 oveq1 6657 . . . . . . . . . 10  |-  ( k  =  x  ->  (
k  ^c  ( 1  /  ( # `  A ) ) )  =  ( x  ^c  ( 1  / 
( # `  A ) ) ) )
103102, 87, 99fvmpt3i 6287 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) ) `
 x )  =  ( x  ^c 
( 1  /  ( # `
 A ) ) ) )
10489, 103syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  x
)  =  ( x  ^c  ( 1  /  ( # `  A
) ) ) )
105 oveq1 6657 . . . . . . . . . 10  |-  ( k  =  y  ->  (
k  ^c  ( 1  /  ( # `  A ) ) )  =  ( y  ^c  ( 1  / 
( # `  A ) ) ) )
106105, 87, 99fvmpt3i 6287 . . . . . . . . 9  |-  ( y  e.  RR+  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) ) `
 y )  =  ( y  ^c 
( 1  /  ( # `
 A ) ) ) )
10791, 106syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  y
)  =  ( y  ^c  ( 1  /  ( # `  A
) ) ) )
108104, 107oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
( ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) ) `  x )  x.  (
( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  y
) )  =  ( ( x  ^c 
( 1  /  ( # `
 A ) ) )  x.  ( y  ^c  ( 1  /  ( # `  A
) ) ) ) )
10995, 101, 1083eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  y  e.  RR+ ) )  ->  (
( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  (
x  x.  y ) )  =  ( ( ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  x
)  x.  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) ) `
 y ) ) )
11036, 36, 70, 70, 83, 83, 88, 109isghmd 17669 . . . . 5  |-  ( ph  ->  ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) )  e.  ( ( Ms  RR+ )  GrpHom  ( Ms  RR+ ) ) )
111 ghmmhm 17670 . . . . 5  |-  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) )  e.  ( ( Ms  RR+ )  GrpHom  ( Ms  RR+ )
)  ->  ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) )  e.  ( ( Ms  RR+ ) MndHom  ( Ms 
RR+ ) ) )
112110, 111syl 17 . . . 4  |-  ( ph  ->  ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) )  e.  ( ( Ms  RR+ ) MndHom  ( Ms  RR+ ) ) )
113 1red 10055 . . . . 5  |-  ( ph  ->  1  e.  RR )
1144, 2, 113fdmfifsupp 8285 . . . 4  |-  ( ph  ->  F finSupp  1 )
11536, 57, 64, 62, 2, 112, 4, 114gsummhm 18338 . . 3  |-  ( ph  ->  ( ( Ms  RR+ )  gsumg  ( ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) )  o.  F
) )  =  ( ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) ) `  (
( Ms  RR+ )  gsumg  F ) ) )
11653a1i 11 . . . . 5  |-  ( ph  -> 
RR+  e.  (SubMnd `  M
) )
1174ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  RR+ )
11815adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  (
1  /  ( # `  A ) )  e.  RR )
119117, 118rpcxpcld 24476 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  ^c  ( 1  /  ( # `  A ) ) )  e.  RR+ )
120 eqid 2622 . . . . . 6  |-  ( k  e.  A  |->  ( ( F `  k )  ^c  ( 1  /  ( # `  A
) ) ) )  =  ( k  e.  A  |->  ( ( F `
 k )  ^c  ( 1  / 
( # `  A ) ) ) )
121119, 120fmptd 6385 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  ( ( F `  k )  ^c 
( 1  /  ( # `
 A ) ) ) ) : A --> RR+ )
1222, 116, 121, 32gsumsubm 17373 . . . 4  |-  ( ph  ->  ( M  gsumg  ( k  e.  A  |->  ( ( F `  k )  ^c 
( 1  /  ( # `
 A ) ) ) ) )  =  ( ( Ms  RR+ )  gsumg  ( k  e.  A  |->  ( ( F `  k
)  ^c  ( 1  /  ( # `  A ) ) ) ) ) )
1239adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
1  /  ( # `  A ) )  e.  RR+ )
1244feqmptd 6249 . . . . . 6  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( F `
 k ) ) )
1252, 117, 123, 124, 13offval2 6914 . . . . 5  |-  ( ph  ->  ( F  oF  ^c  ( A  X.  { ( 1  /  ( # `  A
) ) } ) )  =  ( k  e.  A  |->  ( ( F `  k )  ^c  ( 1  /  ( # `  A
) ) ) ) )
126125oveq2d 6666 . . . 4  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  ( A  X.  { ( 1  /  ( # `  A
) ) } ) ) )  =  ( M  gsumg  ( k  e.  A  |->  ( ( F `  k )  ^c 
( 1  /  ( # `
 A ) ) ) ) ) )
127102cbvmptv 4750 . . . . . . 7  |-  ( k  e.  RR+  |->  ( k  ^c  ( 1  /  ( # `  A
) ) ) )  =  ( x  e.  RR+  |->  ( x  ^c  ( 1  / 
( # `  A ) ) ) )
128127a1i 11 . . . . . 6  |-  ( ph  ->  ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) )  =  ( x  e.  RR+  |->  ( x  ^c  ( 1  /  ( # `  A
) ) ) ) )
129 oveq1 6657 . . . . . 6  |-  ( x  =  ( F `  k )  ->  (
x  ^c  ( 1  /  ( # `  A ) ) )  =  ( ( F `
 k )  ^c  ( 1  / 
( # `  A ) ) ) )
130117, 124, 128, 129fmptco 6396 . . . . 5  |-  ( ph  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) )  o.  F )  =  ( k  e.  A  |->  ( ( F `  k
)  ^c  ( 1  /  ( # `  A ) ) ) ) )
131130oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( Ms  RR+ )  gsumg  ( ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) )  o.  F
) )  =  ( ( Ms  RR+ )  gsumg  ( k  e.  A  |->  ( ( F `  k )  ^c 
( 1  /  ( # `
 A ) ) ) ) ) )
132122, 126, 1313eqtr4rd 2667 . . 3  |-  ( ph  ->  ( ( Ms  RR+ )  gsumg  ( ( k  e.  RR+  |->  ( k  ^c 
( 1  /  ( # `
 A ) ) ) )  o.  F
) )  =  ( M  gsumg  ( F  oF  ^c  ( A  X.  { ( 1  /  ( # `  A
) ) } ) ) ) )
13336, 57, 64, 2, 4, 114gsumcl 18316 . . . . 5  |-  ( ph  ->  ( ( Ms  RR+ )  gsumg  F )  e.  RR+ )
134 oveq1 6657 . . . . . 6  |-  ( k  =  ( ( Ms  RR+ )  gsumg  F )  ->  (
k  ^c  ( 1  /  ( # `  A ) ) )  =  ( ( ( Ms 
RR+ )  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) ) )
135134, 87, 99fvmpt3i 6287 . . . . 5  |-  ( ( ( Ms  RR+ )  gsumg  F )  e.  RR+  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) ) `  ( ( Ms  RR+ )  gsumg  F ) )  =  ( ( ( Ms  RR+ )  gsumg  F )  ^c  ( 1  /  ( # `  A ) ) ) )
136133, 135syl 17 . . . 4  |-  ( ph  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) ) `  ( ( Ms  RR+ )  gsumg  F ) )  =  ( ( ( Ms  RR+ )  gsumg  F )  ^c  ( 1  /  ( # `  A ) ) ) )
1372, 116, 4, 32gsumsubm 17373 . . . . 5  |-  ( ph  ->  ( M  gsumg  F )  =  ( ( Ms  RR+ )  gsumg  F ) )
138137oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( M  gsumg  F )  ^c  ( 1  /  ( # `  A
) ) )  =  ( ( ( Ms  RR+ )  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) ) )
139136, 138eqtr4d 2659 . . 3  |-  ( ph  ->  ( ( k  e.  RR+  |->  ( k  ^c  ( 1  / 
( # `  A ) ) ) ) `  ( ( Ms  RR+ )  gsumg  F ) )  =  ( ( M  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) ) )
140115, 132, 1393eqtr3d 2664 . 2  |-  ( ph  ->  ( M  gsumg  ( F  oF  ^c  ( A  X.  { ( 1  /  ( # `  A
) ) } ) ) )  =  ( ( M  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) ) )
141117rpcnd 11874 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1422, 141fsumcl 14464 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  A  ( F `  k )  e.  CC )
143142, 23, 24divrecd 10804 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  A  ( F `  k )  /  ( # `  A
) )  =  (
sum_ k  e.  A  ( F `  k )  x.  ( 1  / 
( # `  A ) ) ) )
1442, 16, 141fsummulc1 14517 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  A  ( F `  k )  x.  ( 1  / 
( # `  A ) ) )  =  sum_ k  e.  A  (
( F `  k
)  x.  ( 1  /  ( # `  A
) ) ) )
145143, 144eqtr2d 2657 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  ( ( F `  k )  x.  (
1  /  ( # `  A ) ) )  =  ( sum_ k  e.  A  ( F `  k )  /  ( # `
 A ) ) )
14616adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
1  /  ( # `  A ) )  e.  CC )
147141, 146mulcld 10060 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  x.  ( 1  /  ( # `  A
) ) )  e.  CC )
1482, 147gsumfsum 19813 . . . 4  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( ( F `  k )  x.  (
1  /  ( # `  A ) ) ) ) )  =  sum_ k  e.  A  (
( F `  k
)  x.  ( 1  /  ( # `  A
) ) ) )
1492, 141gsumfsum 19813 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( F `  k
) ) )  = 
sum_ k  e.  A  ( F `  k ) )
150149oveq1d 6665 . . . 4  |-  ( ph  ->  ( (fld 
gsumg  ( k  e.  A  |->  ( F `  k
) ) )  / 
( # `  A ) )  =  ( sum_ k  e.  A  ( F `  k )  /  ( # `  A
) ) )
151145, 148, 1503eqtr4d 2666 . . 3  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  ( ( F `  k )  x.  (
1  /  ( # `  A ) ) ) ) )  =  ( (fld 
gsumg  ( k  e.  A  |->  ( F `  k
) ) )  / 
( # `  A ) ) )
1522, 117, 146, 124, 13offval2 6914 . . . 4  |-  ( ph  ->  ( F  oF  x.  ( A  X.  { ( 1  / 
( # `  A ) ) } ) )  =  ( k  e.  A  |->  ( ( F `
 k )  x.  ( 1  /  ( # `
 A ) ) ) ) )
153152oveq2d 6666 . . 3  |-  ( ph  ->  (fld 
gsumg  ( F  oF  x.  ( A  X.  {
( 1  /  ( # `
 A ) ) } ) ) )  =  (fld 
gsumg  ( k  e.  A  |->  ( ( F `  k )  x.  (
1  /  ( # `  A ) ) ) ) ) )
154124oveq2d 6666 . . . 4  |-  ( ph  ->  (fld 
gsumg  F )  =  (fld  gsumg  ( k  e.  A  |->  ( F `
 k ) ) ) )
155154oveq1d 6665 . . 3  |-  ( ph  ->  ( (fld 
gsumg  F )  /  ( # `
 A ) )  =  ( (fld  gsumg  ( k  e.  A  |->  ( F `  k
) ) )  / 
( # `  A ) ) )
156151, 153, 1553eqtr4d 2666 . 2  |-  ( ph  ->  (fld 
gsumg  ( F  oF  x.  ( A  X.  {
( 1  /  ( # `
 A ) ) } ) ) )  =  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
15728, 140, 1563brtr3d 4684 1  |-  ( ph  ->  ( ( M  gsumg  F )  ^c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    / cdiv 10684   NNcn 11020   RR+crp 11832   #chash 13117   sum_csu 14416   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   MndHom cmhm 17333  SubMndcsubmnd 17334   Grpcgrp 17422  SubGrpcsubg 17588    GrpHom cghm 17657  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548  ℂfldccnfld 19746    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator