Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup Structured version   Visualization version   Unicode version

Theorem suplesup 39555
Description: If any element of  A can be approximated from below by members of  B, then the supremum of  A is smaller or equal to the supremum of  B. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
suplesup.a  |-  ( ph  ->  A  C_  RR )
suplesup.b  |-  ( ph  ->  B  C_  RR* )
suplesup.c  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  < 
z )
Assertion
Ref Expression
suplesup  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
Distinct variable groups:    x, A, z    x, B, y, z    ph, x, z
Allowed substitution hints:    ph( y)    A( y)

Proof of Theorem suplesup
Dummy variables  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplesup.a . . . . . 6  |-  ( ph  ->  A  C_  RR )
2 ressxr 10083 . . . . . 6  |-  RR  C_  RR*
31, 2syl6ss 3615 . . . . 5  |-  ( ph  ->  A  C_  RR* )
4 supxrcl 12145 . . . . 5  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
53, 4syl 17 . . . 4  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  e. 
RR* )
65adantr 481 . . 3  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
7 eqidd 2623 . . . 4  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  -> +oo  = +oo )
8 simpr 477 . . . 4  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  = +oo )
9 peano2re 10209 . . . . . . . . . 10  |-  ( w  e.  RR  ->  (
w  +  1 )  e.  RR )
109adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  ( w  +  1 )  e.  RR )
113adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  A  C_  RR* )
12 supxrunb2 12150 . . . . . . . . . . . 12  |-  ( A 
C_  RR*  ->  ( A. r  e.  RR  E. x  e.  A  r  <  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
1311, 12syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( A. r  e.  RR  E. x  e.  A  r  <  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
148, 13mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  A. r  e.  RR  E. x  e.  A  r  <  x )
1514adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  A. r  e.  RR  E. x  e.  A  r  <  x )
16 breq1 4656 . . . . . . . . . . 11  |-  ( r  =  ( w  + 
1 )  ->  (
r  <  x  <->  ( w  +  1 )  < 
x ) )
1716rexbidv 3052 . . . . . . . . . 10  |-  ( r  =  ( w  + 
1 )  ->  ( E. x  e.  A  r  <  x  <->  E. x  e.  A  ( w  +  1 )  < 
x ) )
1817rspcva 3307 . . . . . . . . 9  |-  ( ( ( w  +  1 )  e.  RR  /\  A. r  e.  RR  E. x  e.  A  r  <  x )  ->  E. x  e.  A  ( w  +  1 )  < 
x )
1910, 15, 18syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  E. x  e.  A  ( w  +  1
)  <  x )
20 1rp 11836 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
2120a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  RR+ )
22 suplesup.c . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  < 
z )
2322r19.21bi 2932 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  <  z
)
24 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  1  ->  (
x  -  y )  =  ( x  - 
1 ) )
2524breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( y  =  1  ->  (
( x  -  y
)  <  z  <->  ( x  -  1 )  < 
z ) )
2625rexbidv 3052 . . . . . . . . . . . . . . . 16  |-  ( y  =  1  ->  ( E. z  e.  B  ( x  -  y
)  <  z  <->  E. z  e.  B  ( x  -  1 )  < 
z ) )
2726rspcva 3307 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR+  /\  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  < 
z )  ->  E. z  e.  B  ( x  -  1 )  < 
z )
2821, 23, 27syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  E. z  e.  B  ( x  -  1 )  < 
z )
2928adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A )  ->  E. z  e.  B  ( x  -  1 )  < 
z )
30293adant3 1081 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  ->  E. z  e.  B  ( x  -  1
)  <  z )
31 nfv 1843 . . . . . . . . . . . . 13  |-  F/ z ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )
32 simp11r 1173 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  w  e.  RR )
332, 32sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  w  e.  RR* )
341sselda 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
35 1red 10055 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  RR )
3634, 35resubcld 10458 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  (
x  -  1 )  e.  RR )
3736adantlr 751 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A )  ->  (
x  -  1 )  e.  RR )
38373adant3 1081 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  -> 
( x  -  1 )  e.  RR )
39383ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  ( x  - 
1 )  e.  RR )
402, 39sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  ( x  - 
1 )  e.  RR* )
41 suplesup.b . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  C_  RR* )
4241sselda 3603 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  B )  ->  z  e.  RR* )
4342adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  RR )  /\  z  e.  B )  ->  z  e.  RR* )
44433ad2antl1 1223 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B
)  ->  z  e.  RR* )
45443adant3 1081 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  z  e.  RR* )
46 simp3 1063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  -> 
( w  +  1 )  <  x )
47 simp1r 1086 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  ->  w  e.  RR )
48 1red 10055 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  -> 
1  e.  RR )
4934adantlr 751 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A )  ->  x  e.  RR )
50493adant3 1081 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  ->  x  e.  RR )
5147, 48, 50ltaddsubd 10627 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  -> 
( ( w  + 
1 )  <  x  <->  w  <  ( x  - 
1 ) ) )
5246, 51mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  ->  w  <  ( x  - 
1 ) )
53523ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  w  <  (
x  -  1 ) )
54 simp3 1063 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  ( x  - 
1 )  <  z
)
5533, 40, 45, 53, 54xrlttrd 11990 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  ( w  +  1 )  <  x )  /\  z  e.  B  /\  ( x  -  1 )  <  z )  ->  w  <  z
)
56553exp 1264 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  -> 
( z  e.  B  ->  ( ( x  - 
1 )  <  z  ->  w  <  z ) ) )
5731, 56reximdai 3012 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  -> 
( E. z  e.  B  ( x  - 
1 )  <  z  ->  E. z  e.  B  w  <  z ) )
5830, 57mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  (
w  +  1 )  <  x )  ->  E. z  e.  B  w  <  z )
59583exp 1264 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  RR )  ->  ( x  e.  A  ->  (
( w  +  1 )  <  x  ->  E. z  e.  B  w  <  z ) ) )
6059adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  ( x  e.  A  ->  ( ( w  + 
1 )  <  x  ->  E. z  e.  B  w  <  z ) ) )
6160rexlimdv 3030 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  ( E. x  e.  A  ( w  + 
1 )  <  x  ->  E. z  e.  B  w  <  z ) )
6219, 61mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  E. z  e.  B  w  <  z )
632a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  RR  C_  RR* )
6463sselda 3603 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  RR )  ->  w  e. 
RR* )
6564ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  z  e.  B
)  /\  w  <  z )  ->  w  e.  RR* )
6643adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  z  e.  B
)  /\  w  <  z )  ->  z  e.  RR* )
67 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  z  e.  B
)  /\  w  <  z )  ->  w  <  z )
6865, 66, 67xrltled 39486 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  RR )  /\  z  e.  B
)  /\  w  <  z )  ->  w  <_  z )
6968ex 450 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  z  e.  B )  ->  (
w  <  z  ->  w  <_  z ) )
7069adantllr 755 . . . . . . . 8  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  /\  z  e.  B
)  ->  ( w  <  z  ->  w  <_  z ) )
7170reximdva 3017 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  ( E. z  e.  B  w  <  z  ->  E. z  e.  B  w  <_  z ) )
7262, 71mpd 15 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  /\  w  e.  RR )  ->  E. z  e.  B  w  <_  z )
7372ralrimiva 2966 . . . . 5  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  A. w  e.  RR  E. z  e.  B  w  <_  z )
74 supxrunb1 12149 . . . . . . 7  |-  ( B 
C_  RR*  ->  ( A. w  e.  RR  E. z  e.  B  w  <_  z  <->  sup ( B ,  RR* ,  <  )  = +oo ) )
7541, 74syl 17 . . . . . 6  |-  ( ph  ->  ( A. w  e.  RR  E. z  e.  B  w  <_  z  <->  sup ( B ,  RR* ,  <  )  = +oo ) )
7675adantr 481 . . . . 5  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( A. w  e.  RR  E. z  e.  B  w  <_  z  <->  sup ( B ,  RR* ,  <  )  = +oo ) )
7773, 76mpbid 222 . . . 4  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( B ,  RR* ,  <  )  = +oo )
787, 8, 773eqtr4d 2666 . . 3  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )
796, 78xreqled 39546 . 2  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
80 supeq1 8351 . . . . . . 7  |-  ( A  =  (/)  ->  sup ( A ,  RR* ,  <  )  =  sup ( (/) , 
RR* ,  <  ) )
81 xrsup0 12153 . . . . . . . 8  |-  sup ( (/)
,  RR* ,  <  )  = -oo
8281a1i 11 . . . . . . 7  |-  ( A  =  (/)  ->  sup ( (/)
,  RR* ,  <  )  = -oo )
8380, 82eqtrd 2656 . . . . . 6  |-  ( A  =  (/)  ->  sup ( A ,  RR* ,  <  )  = -oo )
8483adantl 482 . . . . 5  |-  ( (
ph  /\  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  = -oo )
85 supxrcl 12145 . . . . . . . 8  |-  ( B 
C_  RR*  ->  sup ( B ,  RR* ,  <  )  e.  RR* )
8641, 85syl 17 . . . . . . 7  |-  ( ph  ->  sup ( B ,  RR* ,  <  )  e. 
RR* )
87 mnfle 11969 . . . . . . 7  |-  ( sup ( B ,  RR* ,  <  )  e.  RR*  -> -oo  <_  sup ( B ,  RR* ,  <  ) )
8886, 87syl 17 . . . . . 6  |-  ( ph  -> -oo  <_  sup ( B ,  RR* ,  <  ) )
8988adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  (/) )  -> -oo  <_  sup ( B ,  RR* ,  <  ) )
9084, 89eqbrtrd 4675 . . . 4  |-  ( (
ph  /\  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
9190adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
92 simpll 790 . . . 4  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  ph )
931adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  C_  RR )
94 neqne 2802 . . . . . . . . 9  |-  ( -.  A  =  (/)  ->  A  =/=  (/) )
9594adantl 482 . . . . . . . 8  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  =/=  (/) )
96 supxrgtmnf 12159 . . . . . . . 8  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  -> -oo  <  sup ( A ,  RR* ,  <  ) )
9793, 95, 96syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  -.  A  =  (/) )  -> -oo  <  sup ( A ,  RR* ,  <  ) )
9897adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  -> -oo  <  sup ( A ,  RR* ,  <  ) )
99 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  -.  sup ( A ,  RR* ,  <  )  = +oo )
100 simpl 473 . . . . . . . . . 10  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  ph )
101 nltpnft 11995 . . . . . . . . . 10  |-  ( sup ( A ,  RR* ,  <  )  e.  RR*  ->  ( sup ( A ,  RR* ,  <  )  = +oo  <->  -.  sup ( A ,  RR* ,  <  )  < +oo ) )
102100, 5, 1013syl 18 . . . . . . . . 9  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  -> 
( sup ( A ,  RR* ,  <  )  = +oo  <->  -.  sup ( A ,  RR* ,  <  )  < +oo ) )
10399, 102mtbid 314 . . . . . . . 8  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  -.  -.  sup ( A ,  RR* ,  <  )  < +oo )
104 notnotr 125 . . . . . . . 8  |-  ( -. 
-.  sup ( A ,  RR* ,  <  )  < +oo  ->  sup ( A ,  RR* ,  <  )  < +oo )
105103, 104syl 17 . . . . . . 7  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  < +oo )
106105adantr 481 . . . . . 6  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  < +oo )
10798, 106jca 554 . . . . 5  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  ( -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  < +oo ) )
10892, 5syl 17 . . . . . 6  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
109 xrrebnd 11999 . . . . . 6  |-  ( sup ( A ,  RR* ,  <  )  e.  RR*  ->  ( sup ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  < +oo ) ) )
110108, 109syl 17 . . . . 5  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  ( sup ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  <  sup ( A ,  RR* ,  <  )  /\  sup ( A ,  RR* ,  <  )  < +oo ) ) )
111107, 110mpbird 247 . . . 4  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
112 nfv 1843 . . . . 5  |-  F/ w
( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )
11341adantr 481 . . . . 5  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  B  C_  RR* )
114 simpr 477 . . . . 5  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
115114adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
116 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  ->  w  e.  RR+ )
117116rphalfcld 11884 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( w  /  2
)  e.  RR+ )
118115, 117ltsubrpd 11904 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  <  sup ( A ,  RR* ,  <  ) )
1193ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  ->  A  C_  RR* )
120 rpre 11839 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  w  e.  RR )
121 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
122121a1i 11 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  2  e.  RR )
123 2ne0 11113 . . . . . . . . . . . . 13  |-  2  =/=  0
124123a1i 11 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  2  =/=  0 )
125120, 122, 124redivcld 10853 . . . . . . . . . . 11  |-  ( w  e.  RR+  ->  ( w  /  2 )  e.  RR )
126125adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( w  /  2
)  e.  RR )
127115, 126resubcld 10458 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  e.  RR )
1282, 127sseldi 3601 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  e. 
RR* )
129 supxrlub 12155 . . . . . . . 8  |-  ( ( A  C_  RR*  /\  ( sup ( A ,  RR* ,  <  )  -  (
w  /  2 ) )  e.  RR* )  ->  ( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x ) )
130119, 128, 129syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x ) )
131118, 130mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  ->  E. x  e.  A  ( sup ( A ,  RR* ,  <  )  -  ( w  /  2
) )  <  x
)
132 rphalfcl 11858 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  ( w  /  2 )  e.  RR+ )
1331323ad2ant2 1083 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  RR+ 
/\  x  e.  A
)  ->  ( w  /  2 )  e.  RR+ )
134233adant2 1080 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  RR+ 
/\  x  e.  A
)  ->  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  <  z
)
135 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( y  =  ( w  / 
2 )  ->  (
x  -  y )  =  ( x  -  ( w  /  2
) ) )
136135breq1d 4663 . . . . . . . . . . . . 13  |-  ( y  =  ( w  / 
2 )  ->  (
( x  -  y
)  <  z  <->  ( x  -  ( w  / 
2 ) )  < 
z ) )
137136rexbidv 3052 . . . . . . . . . . . 12  |-  ( y  =  ( w  / 
2 )  ->  ( E. z  e.  B  ( x  -  y
)  <  z  <->  E. z  e.  B  ( x  -  ( w  / 
2 ) )  < 
z ) )
138137rspcva 3307 . . . . . . . . . . 11  |-  ( ( ( w  /  2
)  e.  RR+  /\  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  < 
z )  ->  E. z  e.  B  ( x  -  ( w  / 
2 ) )  < 
z )
139133, 134, 138syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  RR+ 
/\  x  e.  A
)  ->  E. z  e.  B  ( x  -  ( w  / 
2 ) )  < 
z )
140139ad5ant134 1313 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  (
w  /  2 ) )  <  x )  ->  E. z  e.  B  ( x  -  (
w  /  2 ) )  <  z )
141 recn 10026 . . . . . . . . . . . . . . . . . 18  |-  ( sup ( A ,  RR* ,  <  )  e.  RR  ->  sup ( A ,  RR* ,  <  )  e.  CC )
142141adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( sup ( A ,  RR* ,  <  )  e.  RR  /\  w  e.  RR+ )  ->  sup ( A ,  RR* ,  <  )  e.  CC )
143120recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR+  ->  w  e.  CC )
144143adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( sup ( A ,  RR* ,  <  )  e.  RR  /\  w  e.  RR+ )  ->  w  e.  CC )
145144halfcld 11277 . . . . . . . . . . . . . . . . 17  |-  ( ( sup ( A ,  RR* ,  <  )  e.  RR  /\  w  e.  RR+ )  ->  ( w  /  2 )  e.  CC )
146142, 145, 145subsub4d 10423 . . . . . . . . . . . . . . . 16  |-  ( ( sup ( A ,  RR* ,  <  )  e.  RR  /\  w  e.  RR+ )  ->  ( ( sup ( A ,  RR* ,  <  )  -  ( w  /  2
) )  -  (
w  /  2 ) )  =  ( sup ( A ,  RR* ,  <  )  -  (
( w  /  2
)  +  ( w  /  2 ) ) ) )
1471432halvesd 11278 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  RR+  ->  ( ( w  /  2 )  +  ( w  / 
2 ) )  =  w )
148147oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  RR+  ->  ( sup ( A ,  RR* ,  <  )  -  (
( w  /  2
)  +  ( w  /  2 ) ) )  =  ( sup ( A ,  RR* ,  <  )  -  w
) )
149148adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( sup ( A ,  RR* ,  <  )  e.  RR  /\  w  e.  RR+ )  ->  ( sup ( A ,  RR* ,  <  )  -  (
( w  /  2
)  +  ( w  /  2 ) ) )  =  ( sup ( A ,  RR* ,  <  )  -  w
) )
150146, 149eqtr2d 2657 . . . . . . . . . . . . . . 15  |-  ( ( sup ( A ,  RR* ,  <  )  e.  RR  /\  w  e.  RR+ )  ->  ( sup ( A ,  RR* ,  <  )  -  w
)  =  ( ( sup ( A ,  RR* ,  <  )  -  ( w  /  2
) )  -  (
w  /  2 ) ) )
151150adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( sup ( A ,  RR* ,  <  )  -  w )  =  ( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) ) )
152151adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A
)  ->  ( sup ( A ,  RR* ,  <  )  -  w )  =  ( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) ) )
153152ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( sup ( A ,  RR* ,  <  )  -  w )  =  ( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) ) )
154127, 126resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) )  e.  RR )
155154adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A
)  ->  ( ( sup ( A ,  RR* ,  <  )  -  (
w  /  2 ) )  -  ( w  /  2 ) )  e.  RR )
156155ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) )  e.  RR )
1572, 156sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) )  e.  RR* )
158120, 49sylanl2 683 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  x  e.  A )  ->  x  e.  RR )
159125ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  x  e.  A )  ->  (
w  /  2 )  e.  RR )
160158, 159resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  x  e.  A )  ->  (
x  -  ( w  /  2 ) )  e.  RR )
161160adantllr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A
)  ->  ( x  -  ( w  / 
2 ) )  e.  RR )
162161ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( x  -  (
w  /  2 ) )  e.  RR )
1632, 162sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( x  -  (
w  /  2 ) )  e.  RR* )
164 simp-6l 810 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  ->  ph )
165 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
z  e.  B )
166164, 165, 42syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
z  e.  RR* )
167 simp-6r 811 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
168120ad5antlr 771 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  ->  w  e.  RR )
169168rehalfcld 11279 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( w  /  2
)  e.  RR )
170167, 169resubcld 10458 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  e.  RR )
171 simp-4r 807 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  ->  x  e.  A )
172164, 171, 34syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  ->  x  e.  RR )
173 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )
174170, 172, 169, 173ltsub1dd 10639 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) )  <  (
x  -  ( w  /  2 ) ) )
175 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( x  -  (
w  /  2 ) )  <  z )
176157, 163, 166, 174, 175xrlttrd 11990 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  -  ( w  /  2
) )  <  z
)
177153, 176eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  /\  (
x  -  ( w  /  2 ) )  <  z )  -> 
( sup ( A ,  RR* ,  <  )  -  w )  <  z
)
178177ex 450 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x )  /\  z  e.  B )  ->  (
( x  -  (
w  /  2 ) )  <  z  -> 
( sup ( A ,  RR* ,  <  )  -  w )  <  z
) )
179178reximdva 3017 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  (
w  /  2 ) )  <  x )  ->  ( E. z  e.  B  ( x  -  ( w  / 
2 ) )  < 
z  ->  E. z  e.  B  ( sup ( A ,  RR* ,  <  )  -  w )  < 
z ) )
180140, 179mpd 15 . . . . . . . 8  |-  ( ( ( ( ( ph  /\ 
sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A )  /\  ( sup ( A ,  RR* ,  <  )  -  (
w  /  2 ) )  <  x )  ->  E. z  e.  B  ( sup ( A ,  RR* ,  <  )  -  w )  <  z
)
181180ex 450 . . . . . . 7  |-  ( ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  /\  x  e.  A
)  ->  ( ( sup ( A ,  RR* ,  <  )  -  (
w  /  2 ) )  <  x  ->  E. z  e.  B  ( sup ( A ,  RR* ,  <  )  -  w )  <  z
) )
182181rexlimdva 3031 . . . . . 6  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  -> 
( E. x  e.  A  ( sup ( A ,  RR* ,  <  )  -  ( w  / 
2 ) )  < 
x  ->  E. z  e.  B  ( sup ( A ,  RR* ,  <  )  -  w )  < 
z ) )
183131, 182mpd 15 . . . . 5  |-  ( ( ( ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  /\  w  e.  RR+ )  ->  E. z  e.  B  ( sup ( A ,  RR* ,  <  )  -  w )  <  z
)
184112, 113, 114, 183supxrgere 39549 . . . 4  |-  ( (
ph  /\  sup ( A ,  RR* ,  <  )  e.  RR )  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
18592, 111, 184syl2anc 693 . . 3  |-  ( ( ( ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  /\  -.  A  =  (/) )  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
18691, 185pm2.61dan 832 . 2  |-  ( (
ph  /\  -.  sup ( A ,  RR* ,  <  )  = +oo )  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
18779, 186pm2.61dan 832 1  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator