MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd2lsw Structured version   Visualization version   Unicode version

Theorem swrd2lsw 13695
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrd2lsw  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( W substr  <. ( ( # `  W )  -  2 ) ,  ( # `  W ) >. )  =  <" ( W `
 ( ( # `  W )  -  2 ) ) ( lastS  `  W
) "> )

Proof of Theorem swrd2lsw
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  W  e. Word  V )
2 lencl 13324 . . . . 5  |-  ( W  e. Word  V  ->  ( # `
 W )  e. 
NN0 )
3 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
4 nn0z 11400 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  ZZ )
5 zltp1le 11427 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( # `  W )  e.  ZZ )  -> 
( 1  <  ( # `
 W )  <->  ( 1  +  1 )  <_ 
( # `  W ) ) )
63, 4, 5sylancr 695 . . . . . . . 8  |-  ( (
# `  W )  e.  NN0  ->  ( 1  <  ( # `  W
)  <->  ( 1  +  1 )  <_  ( # `
 W ) ) )
7 1p1e2 11134 . . . . . . . . . . 11  |-  ( 1  +  1 )  =  2
87a1i 11 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN0  ->  ( 1  +  1 )  =  2 )
98breq1d 4663 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( (
1  +  1 )  <_  ( # `  W
)  <->  2  <_  ( # `
 W ) ) )
109biimpd 219 . . . . . . . 8  |-  ( (
# `  W )  e.  NN0  ->  ( (
1  +  1 )  <_  ( # `  W
)  ->  2  <_  (
# `  W )
) )
116, 10sylbid 230 . . . . . . 7  |-  ( (
# `  W )  e.  NN0  ->  ( 1  <  ( # `  W
)  ->  2  <_  (
# `  W )
) )
1211imp 445 . . . . . 6  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  2  <_  ( # `  W
) )
13 2nn0 11309 . . . . . . . . 9  |-  2  e.  NN0
1413jctl 564 . . . . . . . 8  |-  ( (
# `  W )  e.  NN0  ->  ( 2  e.  NN0  /\  ( # `
 W )  e. 
NN0 ) )
1514adantr 481 . . . . . . 7  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  (
2  e.  NN0  /\  ( # `  W )  e.  NN0 ) )
16 nn0sub 11343 . . . . . . 7  |-  ( ( 2  e.  NN0  /\  ( # `  W )  e.  NN0 )  -> 
( 2  <_  ( # `
 W )  <->  ( ( # `
 W )  - 
2 )  e.  NN0 ) )
1715, 16syl 17 . . . . . 6  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  (
2  <_  ( # `  W
)  <->  ( ( # `  W )  -  2 )  e.  NN0 )
)
1812, 17mpbid 222 . . . . 5  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  (
( # `  W )  -  2 )  e. 
NN0 )
192, 18sylan 488 . . . 4  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  (
( # `  W )  -  2 )  e. 
NN0 )
20 0red 10041 . . . . . . . . . . . 12  |-  ( (
# `  W )  e.  ZZ  ->  0  e.  RR )
21 1red 10055 . . . . . . . . . . . 12  |-  ( (
# `  W )  e.  ZZ  ->  1  e.  RR )
22 zre 11381 . . . . . . . . . . . 12  |-  ( (
# `  W )  e.  ZZ  ->  ( # `  W
)  e.  RR )
2320, 21, 223jca 1242 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  ZZ  ->  ( 0  e.  RR  /\  1  e.  RR  /\  ( # `  W )  e.  RR ) )
24 0lt1 10550 . . . . . . . . . . 11  |-  0  <  1
25 lttr 10114 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  ( # `
 W )  e.  RR )  ->  (
( 0  <  1  /\  1  <  ( # `  W ) )  -> 
0  <  ( # `  W
) ) )
2625expd 452 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  ( # `
 W )  e.  RR )  ->  (
0  <  1  ->  ( 1  <  ( # `  W )  ->  0  <  ( # `  W
) ) ) )
2723, 24, 26mpisyl 21 . . . . . . . . . 10  |-  ( (
# `  W )  e.  ZZ  ->  ( 1  <  ( # `  W
)  ->  0  <  (
# `  W )
) )
28 elnnz 11387 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  NN  <->  ( ( # `  W )  e.  ZZ  /\  0  <  ( # `  W ) ) )
2928simplbi2 655 . . . . . . . . . 10  |-  ( (
# `  W )  e.  ZZ  ->  ( 0  <  ( # `  W
)  ->  ( # `  W
)  e.  NN ) )
3027, 29syld 47 . . . . . . . . 9  |-  ( (
# `  W )  e.  ZZ  ->  ( 1  <  ( # `  W
)  ->  ( # `  W
)  e.  NN ) )
314, 30syl 17 . . . . . . . 8  |-  ( (
# `  W )  e.  NN0  ->  ( 1  <  ( # `  W
)  ->  ( # `  W
)  e.  NN ) )
3231imp 445 . . . . . . 7  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  ( # `
 W )  e.  NN )
33 fzo0end 12560 . . . . . . 7  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  ( 0..^ ( # `  W
) ) )
3432, 33syl 17 . . . . . 6  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )
35 nn0cn 11302 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  CC )
36 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
3736a1i 11 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  NN0  ->  2  e.  CC )
38 1cnd 10056 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  NN0  ->  1  e.  CC )
3935, 37, 383jca 1242 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  e.  CC  /\  2  e.  CC  /\  1  e.  CC ) )
40 1e2m1 11136 . . . . . . . . . . . . 13  |-  1  =  ( 2  -  1 )
4140a1i 11 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  1  =  ( 2  -  1 ) )
4241oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( # `  W )  -  1 )  =  ( ( # `  W
)  -  ( 2  -  1 ) ) )
43 subsub 10311 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( # `  W )  -  ( 2  -  1 ) )  =  ( ( ( # `  W )  -  2 )  +  1 ) )
4442, 43eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( # `  W
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( # `  W )  -  1 )  =  ( ( ( # `  W )  -  2 )  +  1 ) )
4539, 44syl 17 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  - 
1 )  =  ( ( ( # `  W
)  -  2 )  +  1 ) )
4645eqcomd 2628 . . . . . . . 8  |-  ( (
# `  W )  e.  NN0  ->  ( (
( # `  W )  -  2 )  +  1 )  =  ( ( # `  W
)  -  1 ) )
4746eleq1d 2686 . . . . . . 7  |-  ( (
# `  W )  e.  NN0  ->  ( (
( ( # `  W
)  -  2 )  +  1 )  e.  ( 0..^ ( # `  W ) )  <->  ( ( # `
 W )  - 
1 )  e.  ( 0..^ ( # `  W
) ) ) )
4847adantr 481 . . . . . 6  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  (
( ( ( # `  W )  -  2 )  +  1 )  e.  ( 0..^ (
# `  W )
)  <->  ( ( # `  W )  -  1 )  e.  ( 0..^ ( # `  W
) ) ) )
4934, 48mpbird 247 . . . . 5  |-  ( ( ( # `  W
)  e.  NN0  /\  1  <  ( # `  W
) )  ->  (
( ( # `  W
)  -  2 )  +  1 )  e.  ( 0..^ ( # `  W ) ) )
502, 49sylan 488 . . . 4  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  (
( ( # `  W
)  -  2 )  +  1 )  e.  ( 0..^ ( # `  W ) ) )
511, 19, 503jca 1242 . . 3  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( W  e. Word  V  /\  (
( # `  W )  -  2 )  e. 
NN0  /\  ( (
( # `  W )  -  2 )  +  1 )  e.  ( 0..^ ( # `  W
) ) ) )
52 swrds2 13685 . . 3  |-  ( ( W  e. Word  V  /\  ( ( # `  W
)  -  2 )  e.  NN0  /\  (
( ( # `  W
)  -  2 )  +  1 )  e.  ( 0..^ ( # `  W ) ) )  ->  ( W substr  <. (
( # `  W )  -  2 ) ,  ( ( ( # `  W )  -  2 )  +  2 )
>. )  =  <" ( W `  (
( # `  W )  -  2 ) ) ( W `  (
( ( # `  W
)  -  2 )  +  1 ) ) "> )
5351, 52syl 17 . 2  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( W substr  <. ( ( # `  W )  -  2 ) ,  ( ( ( # `  W
)  -  2 )  +  2 ) >.
)  =  <" ( W `  ( ( # `
 W )  - 
2 ) ) ( W `  ( ( ( # `  W
)  -  2 )  +  1 ) ) "> )
5435, 36jctir 561 . . . . . 6  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  e.  CC  /\  2  e.  CC ) )
55 npcan 10290 . . . . . . 7  |-  ( ( ( # `  W
)  e.  CC  /\  2  e.  CC )  ->  ( ( ( # `  W )  -  2 )  +  2 )  =  ( # `  W
) )
5655eqcomd 2628 . . . . . 6  |-  ( ( ( # `  W
)  e.  CC  /\  2  e.  CC )  ->  ( # `  W
)  =  ( ( ( # `  W
)  -  2 )  +  2 ) )
572, 54, 563syl 18 . . . . 5  |-  ( W  e. Word  V  ->  ( # `
 W )  =  ( ( ( # `  W )  -  2 )  +  2 ) )
5857adantr 481 . . . 4  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( # `
 W )  =  ( ( ( # `  W )  -  2 )  +  2 ) )
5958opeq2d 4409 . . 3  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  <. (
( # `  W )  -  2 ) ,  ( # `  W
) >.  =  <. (
( # `  W )  -  2 ) ,  ( ( ( # `  W )  -  2 )  +  2 )
>. )
6059oveq2d 6666 . 2  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( W substr  <. ( ( # `  W )  -  2 ) ,  ( # `  W ) >. )  =  ( W substr  <. (
( # `  W )  -  2 ) ,  ( ( ( # `  W )  -  2 )  +  2 )
>. ) )
61 eqidd 2623 . . 3  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( W `  ( ( # `
 W )  - 
2 ) )  =  ( W `  (
( # `  W )  -  2 ) ) )
62 lsw 13351 . . . . 5  |-  ( W  e. Word  V  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
6339, 43syl 17 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  -  ( 2  -  1 ) )  =  ( ( ( # `  W
)  -  2 )  +  1 ) )
6463eqcomd 2628 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( (
( # `  W )  -  2 )  +  1 )  =  ( ( # `  W
)  -  ( 2  -  1 ) ) )
65 2m1e1 11135 . . . . . . . . . . 11  |-  ( 2  -  1 )  =  1
6665a1i 11 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN0  ->  ( 2  -  1 )  =  1 )
6766oveq2d 6666 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  -  ( 2  -  1 ) )  =  ( ( # `  W
)  -  1 ) )
6864, 67eqtrd 2656 . . . . . . . 8  |-  ( (
# `  W )  e.  NN0  ->  ( (
( # `  W )  -  2 )  +  1 )  =  ( ( # `  W
)  -  1 ) )
692, 68syl 17 . . . . . . 7  |-  ( W  e. Word  V  ->  (
( ( # `  W
)  -  2 )  +  1 )  =  ( ( # `  W
)  -  1 ) )
7069eqcomd 2628 . . . . . 6  |-  ( W  e. Word  V  ->  (
( # `  W )  -  1 )  =  ( ( ( # `  W )  -  2 )  +  1 ) )
7170fveq2d 6195 . . . . 5  |-  ( W  e. Word  V  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  (
( ( # `  W
)  -  2 )  +  1 ) ) )
7262, 71eqtrd 2656 . . . 4  |-  ( W  e. Word  V  ->  ( lastS  `  W )  =  ( W `  ( ( ( # `  W
)  -  2 )  +  1 ) ) )
7372adantr 481 . . 3  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( lastS  `  W )  =  ( W `  ( ( ( # `  W
)  -  2 )  +  1 ) ) )
7461, 73s2eqd 13608 . 2  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  <" ( W `  ( ( # `
 W )  - 
2 ) ) ( lastS  `  W ) ">  =  <" ( W `
 ( ( # `  W )  -  2 ) ) ( W `
 ( ( (
# `  W )  -  2 )  +  1 ) ) "> )
7553, 60, 743eqtr4d 2666 1  |-  ( ( W  e. Word  V  /\  1  <  ( # `  W
) )  ->  ( W substr  <. ( ( # `  W )  -  2 ) ,  ( # `  W ) >. )  =  <" ( W `
 ( ( # `  W )  -  2 ) ) ( lastS  `  W
) "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295   <"cs2 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593
This theorem is referenced by:  2swrd2eqwrdeq  13696
  Copyright terms: Public domain W3C validator