MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdeq Structured version   Visualization version   Unicode version

Theorem swrdeq 13444
Description: Two subwords of words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.)
Assertion
Ref Expression
swrdeq  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( W substr  <. 0 ,  M >. )  =  ( U substr  <. 0 ,  N >. )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( W `  i
)  =  ( U `
 i ) ) ) )
Distinct variable groups:    i, M    i, N    U, i    i, V   
i, W

Proof of Theorem swrdeq
StepHypRef Expression
1 swrdcl 13419 . . . . 5  |-  ( W  e. Word  V  ->  ( W substr  <. 0 ,  M >. )  e. Word  V )
2 swrdcl 13419 . . . . 5  |-  ( U  e. Word  V  ->  ( U substr  <. 0 ,  N >. )  e. Word  V )
31, 2anim12i 590 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V )  ->  ( ( W substr  <. 0 ,  M >. )  e. Word  V  /\  ( U substr  <. 0 ,  N >. )  e. Word  V
) )
433ad2ant1 1082 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( W substr  <. 0 ,  M >. )  e. Word  V  /\  ( U substr  <. 0 ,  N >. )  e. Word  V
) )
5 eqwrd 13346 . . 3  |-  ( ( ( W substr  <. 0 ,  M >. )  e. Word  V  /\  ( U substr  <. 0 ,  N >. )  e. Word  V
)  ->  ( ( W substr  <. 0 ,  M >. )  =  ( U substr  <. 0 ,  N >. )  <-> 
( ( # `  ( W substr  <. 0 ,  M >. ) )  =  (
# `  ( U substr  <.
0 ,  N >. ) )  /\  A. i  e.  ( 0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i ) ) ) )
64, 5syl 17 . 2  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( W substr  <. 0 ,  M >. )  =  ( U substr  <. 0 ,  N >. )  <->  ( ( # `  ( W substr  <. 0 ,  M >. ) )  =  ( # `  ( U substr  <. 0 ,  N >. ) )  /\  A. i  e.  ( 0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i ) ) ) )
7 simpl 473 . . . . . 6  |-  ( ( W  e. Word  V  /\  U  e. Word  V )  ->  W  e. Word  V )
873ad2ant1 1082 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  W  e. Word  V )
9 simpl 473 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
1093ad2ant2 1083 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  M  e.  NN0 )
11 lencl 13324 . . . . . . . 8  |-  ( W  e. Word  V  ->  ( # `
 W )  e. 
NN0 )
1211adantr 481 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V )  ->  ( # `  W
)  e.  NN0 )
13123ad2ant1 1082 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  ( # `
 W )  e. 
NN0 )
14 simpl 473 . . . . . . 7  |-  ( ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
)  ->  M  <_  (
# `  W )
)
15143ad2ant3 1084 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  M  <_  ( # `  W
) )
16 elfz2nn0 12431 . . . . . 6  |-  ( M  e.  ( 0 ... ( # `  W
) )  <->  ( M  e.  NN0  /\  ( # `  W )  e.  NN0  /\  M  <_  ( # `  W
) ) )
1710, 13, 15, 16syl3anbrc 1246 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  M  e.  ( 0 ... ( # `
 W ) ) )
18 swrd0len 13422 . . . . 5  |-  ( ( W  e. Word  V  /\  M  e.  ( 0 ... ( # `  W
) ) )  -> 
( # `  ( W substr  <. 0 ,  M >. ) )  =  M )
198, 17, 18syl2anc 693 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  ( # `
 ( W substr  <. 0 ,  M >. ) )  =  M )
20 simpr 477 . . . . . 6  |-  ( ( W  e. Word  V  /\  U  e. Word  V )  ->  U  e. Word  V )
21203ad2ant1 1082 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  U  e. Word  V )
22 simpr 477 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
23223ad2ant2 1083 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  N  e.  NN0 )
24 lencl 13324 . . . . . . . 8  |-  ( U  e. Word  V  ->  ( # `
 U )  e. 
NN0 )
2524adantl 482 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V )  ->  ( # `  U
)  e.  NN0 )
26253ad2ant1 1082 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  ( # `
 U )  e. 
NN0 )
27 simpr 477 . . . . . . 7  |-  ( ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
)  ->  N  <_  (
# `  U )
)
28273ad2ant3 1084 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  N  <_  ( # `  U
) )
29 elfz2nn0 12431 . . . . . 6  |-  ( N  e.  ( 0 ... ( # `  U
) )  <->  ( N  e.  NN0  /\  ( # `  U )  e.  NN0  /\  N  <_  ( # `  U
) ) )
3023, 26, 28, 29syl3anbrc 1246 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  N  e.  ( 0 ... ( # `
 U ) ) )
31 swrd0len 13422 . . . . 5  |-  ( ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `  U
) ) )  -> 
( # `  ( U substr  <. 0 ,  N >. ) )  =  N )
3221, 30, 31syl2anc 693 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  ( # `
 ( U substr  <. 0 ,  N >. ) )  =  N )
3319, 32eqeq12d 2637 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( # `  ( W substr  <. 0 ,  M >. ) )  =  ( # `  ( U substr  <. 0 ,  N >. ) )  <->  M  =  N ) )
3433anbi1d 741 . 2  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( ( # `  ( W substr  <. 0 ,  M >. ) )  =  (
# `  ( U substr  <.
0 ,  N >. ) )  /\  A. i  e.  ( 0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i ) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i ) ) ) )
358adantr 481 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  W  e. Word  V )
3617adantr 481 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  M  e.  ( 0 ... ( # `
 W ) ) )
3735, 36, 18syl2anc 693 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  ( # `
 ( W substr  <. 0 ,  M >. ) )  =  M )
3837oveq2d 6666 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  (
0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) )  =  ( 0..^ M ) )
3938raleqdv 3144 . . . 4  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  ( A. i  e.  (
0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i )  <->  A. i  e.  (
0..^ M ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i ) ) )
4035adantr 481 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  W  e. Word  V )
4136adantr 481 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  M  e.  ( 0 ... ( # `
 W ) ) )
42 simpr 477 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0..^ M ) )
43 swrd0fv 13439 . . . . . . 7  |-  ( ( W  e. Word  V  /\  M  e.  ( 0 ... ( # `  W
) )  /\  i  e.  ( 0..^ M ) )  ->  ( ( W substr  <. 0 ,  M >. ) `  i )  =  ( W `  i ) )
4440, 41, 42, 43syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  ( ( W substr  <. 0 ,  M >. ) `  i )  =  ( W `  i ) )
45 oveq2 6658 . . . . . . . . . . 11  |-  ( M  =  N  ->  (
0..^ M )  =  ( 0..^ N ) )
4645eleq2d 2687 . . . . . . . . . 10  |-  ( M  =  N  ->  (
i  e.  ( 0..^ M )  <->  i  e.  ( 0..^ N ) ) )
4746adantl 482 . . . . . . . . 9  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  (
i  e.  ( 0..^ M )  <->  i  e.  ( 0..^ N ) ) )
4821adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  i  e.  ( 0..^ N ) )  ->  U  e. Word  V )
4930adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  i  e.  ( 0..^ N ) )  ->  N  e.  ( 0 ... ( # `
 U ) ) )
50 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  i  e.  ( 0..^ N ) )  ->  i  e.  ( 0..^ N ) )
5148, 49, 503jca 1242 . . . . . . . . . . 11  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  i  e.  ( 0..^ N ) )  ->  ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `
 U ) )  /\  i  e.  ( 0..^ N ) ) )
5251ex 450 . . . . . . . . . 10  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
i  e.  ( 0..^ N )  ->  ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `
 U ) )  /\  i  e.  ( 0..^ N ) ) ) )
5352adantr 481 . . . . . . . . 9  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  (
i  e.  ( 0..^ N )  ->  ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `
 U ) )  /\  i  e.  ( 0..^ N ) ) ) )
5447, 53sylbid 230 . . . . . . . 8  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  (
i  e.  ( 0..^ M )  ->  ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `
 U ) )  /\  i  e.  ( 0..^ N ) ) ) )
5554imp 445 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `
 U ) )  /\  i  e.  ( 0..^ N ) ) )
56 swrd0fv 13439 . . . . . . 7  |-  ( ( U  e. Word  V  /\  N  e.  ( 0 ... ( # `  U
) )  /\  i  e.  ( 0..^ N ) )  ->  ( ( U substr  <. 0 ,  N >. ) `  i )  =  ( U `  i ) )
5755, 56syl 17 . . . . . 6  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  ( ( U substr  <. 0 ,  N >. ) `  i )  =  ( U `  i ) )
5844, 57eqeq12d 2637 . . . . 5  |-  ( ( ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  /\  i  e.  ( 0..^ M ) )  ->  ( (
( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i )  <-> 
( W `  i
)  =  ( U `
 i ) ) )
5958ralbidva 2985 . . . 4  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  ( A. i  e.  (
0..^ M ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i )  <->  A. i  e.  (
0..^ M ) ( W `  i )  =  ( U `  i ) ) )
6039, 59bitrd 268 . . 3  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  /\  M  =  N )  ->  ( A. i  e.  (
0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i )  <->  A. i  e.  (
0..^ M ) ( W `  i )  =  ( U `  i ) ) )
6160pm5.32da 673 . 2  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( M  =  N  /\  A. i  e.  ( 0..^ ( # `  ( W substr  <. 0 ,  M >. ) ) ) ( ( W substr  <. 0 ,  M >. ) `  i
)  =  ( ( U substr  <. 0 ,  N >. ) `  i ) )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( W `  i
)  =  ( U `
 i ) ) ) )
626, 34, 613bitrd 294 1  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( M  <_  ( # `  W
)  /\  N  <_  (
# `  U )
) )  ->  (
( W substr  <. 0 ,  M >. )  =  ( U substr  <. 0 ,  N >. )  <->  ( M  =  N  /\  A. i  e.  ( 0..^ M ) ( W `  i
)  =  ( U `
 i ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936    <_ cle 10075   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303
This theorem is referenced by:  clwlksf1clwwlklem  26968
  Copyright terms: Public domain W3C validator