Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkreqN Structured version   Visualization version   Unicode version

Theorem lkreqN 34457
Description: Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkreq.s  |-  S  =  (Scalar `  W )
lkreq.r  |-  R  =  ( Base `  S
)
lkreq.o  |-  .0.  =  ( 0g `  S )
lkreq.f  |-  F  =  (LFnl `  W )
lkreq.k  |-  K  =  (LKer `  W )
lkreq.d  |-  D  =  (LDual `  W )
lkreq.t  |-  .x.  =  ( .s `  D )
lkreq.w  |-  ( ph  ->  W  e.  LVec )
lkreq.a  |-  ( ph  ->  A  e.  ( R 
\  {  .0.  }
) )
lkreq.h  |-  ( ph  ->  H  e.  F )
lkreq.g  |-  ( ph  ->  G  =  ( A 
.x.  H ) )
Assertion
Ref Expression
lkreqN  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )

Proof of Theorem lkreqN
StepHypRef Expression
1 lkreq.g . . . . . . . . 9  |-  ( ph  ->  G  =  ( A 
.x.  H ) )
21eqeq1d 2624 . . . . . . . 8  |-  ( ph  ->  ( G  =  ( 0g `  D )  <-> 
( A  .x.  H
)  =  ( 0g
`  D ) ) )
3 eqid 2622 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
4 lkreq.t . . . . . . . . . 10  |-  .x.  =  ( .s `  D )
5 eqid 2622 . . . . . . . . . 10  |-  (Scalar `  D )  =  (Scalar `  D )
6 eqid 2622 . . . . . . . . . 10  |-  ( Base `  (Scalar `  D )
)  =  ( Base `  (Scalar `  D )
)
7 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  D )
)  =  ( 0g
`  (Scalar `  D )
)
8 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  D )  =  ( 0g `  D
)
9 lkreq.d . . . . . . . . . . 11  |-  D  =  (LDual `  W )
10 lkreq.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LVec )
119, 10lduallvec 34441 . . . . . . . . . 10  |-  ( ph  ->  D  e.  LVec )
12 lkreq.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( R 
\  {  .0.  }
) )
1312eldifad 3586 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  R )
14 lkreq.s . . . . . . . . . . . 12  |-  S  =  (Scalar `  W )
15 lkreq.r . . . . . . . . . . . 12  |-  R  =  ( Base `  S
)
1614, 15, 9, 5, 6, 10ldualsbase 34420 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  (Scalar `  D ) )  =  R )
1713, 16eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( Base `  (Scalar `  D )
) )
18 lkreq.f . . . . . . . . . . 11  |-  F  =  (LFnl `  W )
19 lkreq.h . . . . . . . . . . 11  |-  ( ph  ->  H  e.  F )
2018, 9, 3, 10, 19ldualelvbase 34414 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ( Base `  D ) )
213, 4, 5, 6, 7, 8, 11, 17, 20lvecvs0or 19108 . . . . . . . . 9  |-  ( ph  ->  ( ( A  .x.  H )  =  ( 0g `  D )  <-> 
( A  =  ( 0g `  (Scalar `  D ) )  \/  H  =  ( 0g
`  D ) ) ) )
22 lkreq.o . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  S )
23 lveclmod 19106 . . . . . . . . . . . . . 14  |-  ( W  e.  LVec  ->  W  e. 
LMod )
2410, 23syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LMod )
2514, 22, 9, 5, 7, 24ldual0 34434 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0g `  (Scalar `  D ) )  =  .0.  )
2625eqeq2d 2632 . . . . . . . . . . 11  |-  ( ph  ->  ( A  =  ( 0g `  (Scalar `  D ) )  <->  A  =  .0.  ) )
27 eldifsni 4320 . . . . . . . . . . . . . 14  |-  ( A  e.  ( R  \  {  .0.  } )  ->  A  =/=  .0.  )
2812, 27syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =/=  .0.  )
2928a1d 25 . . . . . . . . . . . 12  |-  ( ph  ->  ( H  =/=  ( 0g `  D )  ->  A  =/=  .0.  ) )
3029necon4d 2818 . . . . . . . . . . 11  |-  ( ph  ->  ( A  =  .0. 
->  H  =  ( 0g `  D ) ) )
3126, 30sylbid 230 . . . . . . . . . 10  |-  ( ph  ->  ( A  =  ( 0g `  (Scalar `  D ) )  ->  H  =  ( 0g `  D ) ) )
32 idd 24 . . . . . . . . . 10  |-  ( ph  ->  ( H  =  ( 0g `  D )  ->  H  =  ( 0g `  D ) ) )
3331, 32jaod 395 . . . . . . . . 9  |-  ( ph  ->  ( ( A  =  ( 0g `  (Scalar `  D ) )  \/  H  =  ( 0g
`  D ) )  ->  H  =  ( 0g `  D ) ) )
3421, 33sylbid 230 . . . . . . . 8  |-  ( ph  ->  ( ( A  .x.  H )  =  ( 0g `  D )  ->  H  =  ( 0g `  D ) ) )
352, 34sylbid 230 . . . . . . 7  |-  ( ph  ->  ( G  =  ( 0g `  D )  ->  H  =  ( 0g `  D ) ) )
36 nne 2798 . . . . . . 7  |-  ( -.  H  =/=  ( 0g
`  D )  <->  H  =  ( 0g `  D ) )
3735, 36syl6ibr 242 . . . . . 6  |-  ( ph  ->  ( G  =  ( 0g `  D )  ->  -.  H  =/=  ( 0g `  D ) ) )
3837con3d 148 . . . . 5  |-  ( ph  ->  ( -.  -.  H  =/=  ( 0g `  D
)  ->  -.  G  =  ( 0g `  D ) ) )
3938orrd 393 . . . 4  |-  ( ph  ->  ( -.  H  =/=  ( 0g `  D
)  \/  -.  G  =  ( 0g `  D ) ) )
40 ianor 509 . . . 4  |-  ( -.  ( H  =/=  ( 0g `  D )  /\  G  =  ( 0g `  D ) )  <->  ( -.  H  =/=  ( 0g `  D )  \/  -.  G  =  ( 0g `  D ) ) )
4139, 40sylibr 224 . . 3  |-  ( ph  ->  -.  ( H  =/=  ( 0g `  D
)  /\  G  =  ( 0g `  D ) ) )
42 df-pss 3590 . . . . . 6  |-  ( ( K `  H ) 
C.  ( K `  G )  <->  ( ( K `  H )  C_  ( K `  G
)  /\  ( K `  H )  =/=  ( K `  G )
) )
43 lkreq.k . . . . . . 7  |-  K  =  (LKer `  W )
4418, 14, 15, 9, 4, 24, 13, 19ldualvscl 34426 . . . . . . . 8  |-  ( ph  ->  ( A  .x.  H
)  e.  F )
451, 44eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  G  e.  F )
4618, 43, 9, 8, 10, 19, 45lkrpssN 34450 . . . . . 6  |-  ( ph  ->  ( ( K `  H )  C.  ( K `  G )  <->  ( H  =/=  ( 0g
`  D )  /\  G  =  ( 0g `  D ) ) ) )
4742, 46syl5rbbr 275 . . . . 5  |-  ( ph  ->  ( ( H  =/=  ( 0g `  D
)  /\  G  =  ( 0g `  D ) )  <->  ( ( K `
 H )  C_  ( K `  G )  /\  ( K `  H )  =/=  ( K `  G )
) ) )
4814, 15, 18, 43, 9, 4, 10, 19, 13lkrss 34455 . . . . . . 7  |-  ( ph  ->  ( K `  H
)  C_  ( K `  ( A  .x.  H
) ) )
491fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( K `  G
)  =  ( K `
 ( A  .x.  H ) ) )
5048, 49sseqtr4d 3642 . . . . . 6  |-  ( ph  ->  ( K `  H
)  C_  ( K `  G ) )
5150biantrurd 529 . . . . 5  |-  ( ph  ->  ( ( K `  H )  =/=  ( K `  G )  <->  ( ( K `  H
)  C_  ( K `  G )  /\  ( K `  H )  =/=  ( K `  G
) ) ) )
5247, 51bitr4d 271 . . . 4  |-  ( ph  ->  ( ( H  =/=  ( 0g `  D
)  /\  G  =  ( 0g `  D ) )  <->  ( K `  H )  =/=  ( K `  G )
) )
5352necon2bbid 2837 . . 3  |-  ( ph  ->  ( ( K `  H )  =  ( K `  G )  <->  -.  ( H  =/=  ( 0g `  D )  /\  G  =  ( 0g `  D ) ) ) )
5441, 53mpbird 247 . 2  |-  ( ph  ->  ( K `  H
)  =  ( K `
 G ) )
5554eqcomd 2628 1  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574    C. wpss 3575   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LModclmod 18863   LVecclvec 19102  LFnlclfn 34344  LKerclk 34372  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264  df-lfl 34345  df-lkr 34373  df-ldual 34411
This theorem is referenced by:  lkrlspeqN  34458  lcdlkreq2N  36912
  Copyright terms: Public domain W3C validator