MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsabseq Structured version   Visualization version   Unicode version

Theorem dvdsabseq 15035
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 14988 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpr 477 . . . . . 6  |-  ( ( M  ||  N  /\  N  ||  M )  ->  N  ||  M )
3 breq1 4656 . . . . . . . 8  |-  ( N  =  0  ->  ( N  ||  M  <->  0  ||  M ) )
4 0dvds 15002 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
54adantr 481 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  M  =  0 ) )
6 zcn 11382 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
76abs00ad 14030 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  0  <->  M  =  0 ) )
87bicomd 213 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  =  0  <->  ( abs `  M )  =  0 ) )
98adantr 481 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  <-> 
( abs `  M
)  =  0 ) )
105, 9bitrd 268 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  ( abs `  M )  =  0 ) )
113, 10sylan9bb 736 . . . . . . 7  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  0 ) )
12 fveq2 6191 . . . . . . . . . 10  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
13 abs0 14025 . . . . . . . . . 10  |-  ( abs `  0 )  =  0
1412, 13syl6eq 2672 . . . . . . . . 9  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
1514adantr 481 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  N )  =  0 )
1615eqeq2d 2632 . . . . . . 7  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  M
)  =  0 ) )
1711, 16bitr4d 271 . . . . . 6  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  ( abs `  N ) ) )
182, 17syl5ib 234 . . . . 5  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N
) ) )
1918expd 452 . . . 4  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) )
20 simprl 794 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
21 simpr 477 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
2221adantl 482 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
23 neqne 2802 . . . . . . 7  |-  ( -.  N  =  0  ->  N  =/=  0 )
2423adantr 481 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  =/=  0 )
25 dvdsleabs2 15034 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( M  ||  N  ->  ( abs `  M )  <_ 
( abs `  N
) ) )
2620, 22, 24, 25syl3anc 1326 . . . . 5  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( abs `  M
)  <_  ( abs `  N ) ) )
27 simpr 477 . . . . . . . . . . 11  |-  ( ( N  ||  M  /\  M  ||  N )  ->  M  ||  N )
28 breq1 4656 . . . . . . . . . . . . 13  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
29 0dvds 15002 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
30 eqcom 2629 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  N )  =  0  <->  0  =  ( abs `  N ) )
31 zcn 11382 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  CC )
3231abs00ad 14030 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
3330, 32syl5rbbr 275 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  0  =  ( abs `  N ) ) )
3429, 33bitrd 268 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  =  ( abs `  N ) ) )
3534adantl 482 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0  =  ( abs `  N
) ) )
3628, 35sylan9bb 736 . . . . . . . . . . . 12  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  0  =  ( abs `  N ) ) )
37 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( M  =  0  ->  ( abs `  M )  =  ( abs `  0
) )
3837, 13syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( M  =  0  ->  ( abs `  M )  =  0 )
3938adantr 481 . . . . . . . . . . . . 13  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  M )  =  0 )
4039eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  0  =  ( abs `  N ) ) )
4136, 40bitr4d 271 . . . . . . . . . . 11  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  ( abs `  M
)  =  ( abs `  N ) ) )
4227, 41syl5ib 234 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  ( abs `  M )  =  ( abs `  N
) ) )
4342a1dd 50 . . . . . . . . 9  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
4443expcomd 454 . . . . . . . 8  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
4521adantl 482 . . . . . . . . . . 11  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
46 simprl 794 . . . . . . . . . . 11  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
47 neqne 2802 . . . . . . . . . . . 12  |-  ( -.  M  =  0  ->  M  =/=  0 )
4847adantr 481 . . . . . . . . . . 11  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  =/=  0 )
49 dvdsleabs2 15034 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( N  ||  M  ->  ( abs `  N )  <_ 
( abs `  M
) ) )
5045, 46, 48, 49syl3anc 1326 . . . . . . . . . 10  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( abs `  N
)  <_  ( abs `  M ) ) )
51 eqcom 2629 . . . . . . . . . . . . . 14  |-  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  N
)  =  ( abs `  M ) )
5231abscld 14175 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
536abscld 14175 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  RR )
54 letri3 10123 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  N
)  e.  RR  /\  ( abs `  M )  e.  RR )  -> 
( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5552, 53, 54syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5651, 55syl5bb 272 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  =  ( abs `  N )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5756biimprd 238 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  N )  <_  ( abs `  M )  /\  ( abs `  M )  <_  ( abs `  N
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
5857expd 452 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
5958adantl 482 . . . . . . . . . 10  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6050, 59syld 47 . . . . . . . . 9  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6160a1d 25 . . . . . . . 8  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6244, 61pm2.61ian 831 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6362com34 91 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6463adantl 482 . . . . 5  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6526, 64mpdd 43 . . . 4  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
6619, 65pm2.61ian 831 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
671, 66mpcom 38 . 2  |-  ( M 
||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) )
6867imp 445 1  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888   RRcr 9935   0cc0 9936    <_ cle 10075   ZZcz 11377   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  dvdseq  15036
  Copyright terms: Public domain W3C validator