MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Visualization version   Unicode version

Theorem gexdvds 17999
Description: The only  N that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1  |-  X  =  ( Base `  G
)
gexcl.2  |-  E  =  (gEx `  G )
gexid.3  |-  .x.  =  (.g
`  G )
gexid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gexdvds  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
Distinct variable groups:    x, E    x, G    x, N    x, X    x,  .0.    x,  .x.

Proof of Theorem gexdvds
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6  |-  X  =  ( Base `  G
)
2 gexcl.2 . . . . . 6  |-  E  =  (gEx `  G )
3 gexid.3 . . . . . 6  |-  .x.  =  (.g
`  G )
4 gexid.4 . . . . . 6  |-  .0.  =  ( 0g `  G )
51, 2, 3, 4gexdvdsi 17998 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  N )  -> 
( N  .x.  x
)  =  .0.  )
653expia 1267 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( E  ||  N  ->  ( N  .x.  x
)  =  .0.  )
)
76ralrimdva 2969 . . 3  |-  ( G  e.  Grp  ->  ( E  ||  N  ->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
87adantr 481 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  ->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
9 noel 3919 . . . . . . 7  |-  -.  ( abs `  N )  e.  (/)
10 oveq1 6657 . . . . . . . . . . . 12  |-  ( y  =  ( abs `  N
)  ->  ( y  .x.  x )  =  ( ( abs `  N
)  .x.  x )
)
1110eqeq1d 2624 . . . . . . . . . . 11  |-  ( y  =  ( abs `  N
)  ->  ( (
y  .x.  x )  =  .0.  <->  ( ( abs `  N )  .x.  x
)  =  .0.  )
)
1211ralbidv 2986 . . . . . . . . . 10  |-  ( y  =  ( abs `  N
)  ->  ( A. x  e.  X  (
y  .x.  x )  =  .0.  <->  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ) )
1312elrab 3363 . . . . . . . . 9  |-  ( ( abs `  N )  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  <->  ( ( abs `  N )  e.  NN  /\ 
A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ) )
14 simprr 796 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) )
1514eleq2d 2687 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  <->  ( abs `  N )  e.  (/) ) )
1613, 15syl5rbbr 275 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  (/)  <->  ( ( abs `  N )  e.  NN  /\  A. x  e.  X  ( ( abs `  N )  .x.  x )  =  .0.  ) ) )
1716rbaibd 949 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ) )  /\  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  )  ->  (
( abs `  N
)  e.  (/)  <->  ( abs `  N )  e.  NN ) )
189, 17mtbii 316 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ) )  /\  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  )  ->  -.  ( abs `  N )  e.  NN )
1918ex 450 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ->  -.  ( abs `  N )  e.  NN ) )
20 nn0abscl 14052 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
2120ad2antlr 763 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( abs `  N )  e. 
NN0 )
22 elnn0 11294 . . . . . . 7  |-  ( ( abs `  N )  e.  NN0  <->  ( ( abs `  N )  e.  NN  \/  ( abs `  N
)  =  0 ) )
2321, 22sylib 208 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  NN  \/  ( abs `  N )  =  0 ) )
2423ord 392 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( -.  ( abs `  N
)  e.  NN  ->  ( abs `  N )  =  0 ) )
2519, 24syld 47 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ->  ( abs `  N )  =  0 ) )
26 simpr 477 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  ( abs `  N )  =  N )
2726oveq1d 6665 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  (
( abs `  N
)  .x.  x )  =  ( N  .x.  x ) )
2827eqeq1d 2624 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  (
( ( abs `  N
)  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
29 oveq1 6657 . . . . . . . . 9  |-  ( ( abs `  N )  =  -u N  ->  (
( abs `  N
)  .x.  x )  =  ( -u N  .x.  x ) )
3029eqeq1d 2624 . . . . . . . 8  |-  ( ( abs `  N )  =  -u N  ->  (
( ( abs `  N
)  .x.  x )  =  .0.  <->  ( -u N  .x.  x )  =  .0.  ) )
31 eqid 2622 . . . . . . . . . . . 12  |-  ( invg `  G )  =  ( invg `  G )
321, 3, 31mulgneg 17560 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  x  e.  X )  ->  ( -u N  .x.  x )  =  ( ( invg `  G ) `
 ( N  .x.  x ) ) )
33323expa 1265 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( -u N  .x.  x )  =  ( ( invg `  G ) `  ( N  .x.  x ) ) )
344, 31grpinvid 17476 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
3534ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( invg `  G ) `
 .0.  )  =  .0.  )
3635eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  .0.  =  ( ( invg `  G ) `  .0.  ) )
3733, 36eqeq12d 2637 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( -u N  .x.  x )  =  .0.  <->  ( ( invg `  G ) `
 ( N  .x.  x ) )  =  ( ( invg `  G ) `  .0.  ) ) )
38 simpll 790 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  G  e.  Grp )
391, 3mulgcl 17559 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  x  e.  X )  ->  ( N  .x.  x )  e.  X )
40393expa 1265 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( N  .x.  x )  e.  X
)
411, 4grpidcl 17450 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  .0.  e.  X )
4241ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  .0.  e.  X )
431, 31, 38, 40, 42grpinv11 17484 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( (
( invg `  G ) `  ( N  .x.  x ) )  =  ( ( invg `  G ) `
 .0.  )  <->  ( N  .x.  x )  =  .0.  ) )
4437, 43bitrd 268 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( -u N  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
4530, 44sylan9bbr 737 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  = 
-u N )  -> 
( ( ( abs `  N )  .x.  x
)  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
46 zre 11381 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
4746ad2antlr 763 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  N  e.  RR )
4847absord 14154 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( abs `  N )  =  N  \/  ( abs `  N )  =  -u N ) )
4928, 45, 48mpjaodan 827 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( (
( abs `  N
)  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
5049ralbidva 2985 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( A. x  e.  X  ( ( abs `  N )  .x.  x
)  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
5150adantr 481 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
52 0dvds 15002 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
5352ad2antlr 763 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
0  ||  N  <->  N  = 
0 ) )
54 simprl 794 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  E  =  0 )
5554breq1d 4663 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( E  ||  N  <->  0  ||  N ) )
56 zcn 11382 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
5756ad2antlr 763 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  N  e.  CC )
5857abs00ad 14030 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
5953, 55, 583bitr4rd 301 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  =  0  <->  E  ||  N ) )
6025, 51, 593imtr3d 282 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0.  ->  E  ||  N ) )
61 elrabi 3359 . . . 4  |-  ( E  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  E  e.  NN )
6246adantl 482 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  N  e.  RR )
63 nnrp 11842 . . . . . . . . . . . 12  |-  ( E  e.  NN  ->  E  e.  RR+ )
64 modval 12670 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  mod  E
)  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6562, 63, 64syl2an 494 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6665adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( N  mod  E )  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6766oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  mod  E )  .x.  x )  =  ( ( N  -  ( E  x.  ( |_ `  ( N  /  E
) ) ) ) 
.x.  x ) )
68 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  G  e.  Grp )
69 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  N  e.  ZZ )
70 nnz 11399 . . . . . . . . . . . 12  |-  ( E  e.  NN  ->  E  e.  ZZ )
7170ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  E  e.  ZZ )
72 rerpdivcl 11861 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  /  E
)  e.  RR )
7362, 63, 72syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  /  E )  e.  RR )
7473flcld 12599 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( |_ `  ( N  /  E
) )  e.  ZZ )
7574adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( |_ `  ( N  /  E
) )  e.  ZZ )
7671, 75zmulcld 11488 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( E  x.  ( |_ `  ( N  /  E ) ) )  e.  ZZ )
77 simprl 794 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  x  e.  X
)
78 eqid 2622 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
791, 3, 78mulgsubdir 17582 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  ( E  x.  ( |_ `  ( N  /  E ) ) )  e.  ZZ  /\  x  e.  X ) )  -> 
( ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  .x.  x )  =  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) ) )
8068, 69, 76, 77, 79syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  .x.  x
)  =  ( ( N  .x.  x ) ( -g `  G
) ( ( E  x.  ( |_ `  ( N  /  E
) ) )  .x.  x ) ) )
81 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( N  .x.  x )  =  .0.  )
82 dvdsmul1 15003 . . . . . . . . . . . . 13  |-  ( ( E  e.  ZZ  /\  ( |_ `  ( N  /  E ) )  e.  ZZ )  ->  E  ||  ( E  x.  ( |_ `  ( N  /  E ) ) ) )
8371, 75, 82syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  E  ||  ( E  x.  ( |_ `  ( N  /  E
) ) ) )
841, 2, 3, 4gexdvdsi 17998 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  ->  (
( E  x.  ( |_ `  ( N  /  E ) ) ) 
.x.  x )  =  .0.  )
8568, 77, 83, 84syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( E  x.  ( |_ `  ( N  /  E
) ) )  .x.  x )  =  .0.  )
8681, 85oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) )  =  (  .0.  ( -g `  G
)  .0.  ) )
87 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  G  e.  Grp )
8841ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  .0.  e.  X
)
891, 4, 78grpsubid 17499 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  .0.  e.  X )  -> 
(  .0.  ( -g `  G )  .0.  )  =  .0.  )
9087, 88, 89syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  (  .0.  ( -g `  G )  .0.  )  =  .0.  )
9190adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  (  .0.  ( -g `  G )  .0.  )  =  .0.  )
9286, 91eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) )  =  .0.  )
9367, 80, 923eqtrd 2660 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  mod  E )  .x.  x )  =  .0.  )
9493expr 643 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  x  e.  X )  ->  (
( N  .x.  x
)  =  .0.  ->  ( ( N  mod  E
)  .x.  x )  =  .0.  ) )
9594ralimdva 2962 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0.  ) )
96 modlt 12679 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  mod  E
)  <  E )
9762, 63, 96syl2an 494 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  <  E )
98 zmodcl 12690 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  E  e.  NN )  ->  ( N  mod  E
)  e.  NN0 )
9998adantll 750 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  e.  NN0 )
10099nn0red 11352 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  e.  RR )
101 nnre 11027 . . . . . . . . . 10  |-  ( E  e.  NN  ->  E  e.  RR )
102101adantl 482 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  E  e.  RR )
103100, 102ltnled 10184 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( ( N  mod  E )  < 
E  <->  -.  E  <_  ( N  mod  E ) ) )
10497, 103mpbid 222 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  -.  E  <_  ( N  mod  E ) )
1051, 2, 3, 4gexlem2 17997 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN  /\  A. x  e.  X  (
( N  mod  E
)  .x.  x )  =  .0.  )  ->  E  e.  ( 1 ... ( N  mod  E ) ) )
106 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( E  e.  ( 1 ... ( N  mod  E
) )  ->  E  <_  ( N  mod  E
) )
107105, 106syl 17 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN  /\  A. x  e.  X  (
( N  mod  E
)  .x.  x )  =  .0.  )  ->  E  <_  ( N  mod  E
) )
1081073expia 1267 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN )  -> 
( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  E  <_  ( N  mod  E ) ) )
109108impancom 456 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A. x  e.  X  ( ( N  mod  E
)  .x.  x )  =  .0.  )  ->  (
( N  mod  E
)  e.  NN  ->  E  <_  ( N  mod  E ) ) )
110109con3d 148 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A. x  e.  X  ( ( N  mod  E
)  .x.  x )  =  .0.  )  ->  ( -.  E  <_  ( N  mod  E )  ->  -.  ( N  mod  E
)  e.  NN ) )
111110ex 450 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0.  ->  ( -.  E  <_  ( N  mod  E )  ->  -.  ( N  mod  E
)  e.  NN ) ) )
112111ad2antrr 762 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  ( -.  E  <_ 
( N  mod  E
)  ->  -.  ( N  mod  E )  e.  NN ) ) )
113104, 112mpid 44 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  -.  ( N  mod  E )  e.  NN ) )
114 elnn0 11294 . . . . . . . 8  |-  ( ( N  mod  E )  e.  NN0  <->  ( ( N  mod  E )  e.  NN  \/  ( N  mod  E )  =  0 ) )
11599, 114sylib 208 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( ( N  mod  E )  e.  NN  \/  ( N  mod  E )  =  0 ) )
116115ord 392 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( -.  ( N  mod  E )  e.  NN  ->  ( N  mod  E )  =  0 ) )
11795, 113, 1163syld 60 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  ( N  mod  E
)  =  0 ) )
118 simpr 477 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  E  e.  NN )
119 simplr 792 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  N  e.  ZZ )
120 dvdsval3 14987 . . . . . 6  |-  ( ( E  e.  NN  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  ( N  mod  E )  =  0 ) )
121118, 119, 120syl2anc 693 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( E  ||  N 
<->  ( N  mod  E
)  =  0 ) )
122117, 121sylibrd 249 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  E  ||  N ) )
12361, 122sylan2 491 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
)  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0.  ->  E  ||  N
) )
124 eqid 2622 . . . . 5  |-  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
1251, 3, 4, 2, 124gexlem1 17994 . . . 4  |-  ( G  e.  Grp  ->  (
( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } ) )
126125adantr 481 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
) )
12760, 123, 126mpjaodan 827 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  E  ||  N ) )
1288, 127impbid 202 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832   ...cfz 12326   |_cfl 12591    mod cmo 12668   abscabs 13974    || cdvds 14983   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424  .gcmg 17540  gExcgex 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-gex 17949
This theorem is referenced by:  gexdvds2  18000
  Copyright terms: Public domain W3C validator