MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsplit Structured version   Visualization version   Unicode version

Theorem sumsplit 14499
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1  |-  Z  =  ( ZZ>= `  M )
sumsplit.2  |-  ( ph  ->  M  e.  ZZ )
sumsplit.3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
sumsplit.4  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
sumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
sumsplit.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
sumsplit.7  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
sumsplit.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
sumsplit.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
sumsplit  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hint:    C( k)

Proof of Theorem sumsplit
StepHypRef Expression
1 sumsplit.4 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
2 sumsplit.7 . . . 4  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
32ralrimiva 2966 . . 3  |-  ( ph  ->  A. k  e.  ( A  u.  B ) C  e.  CC )
4 sumsplit.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
54eqimssi 3659 . . . . 5  |-  Z  C_  ( ZZ>= `  M )
65a1i 11 . . . 4  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
76orcd 407 . . 3  |-  ( ph  ->  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)
8 sumss2 14457 . . 3  |-  ( ( ( ( A  u.  B )  C_  Z  /\  A. k  e.  ( A  u.  B ) C  e.  CC )  /\  ( Z  C_  ( ZZ>= `  M )  \/  Z  e.  Fin ) )  ->  sum_ k  e.  ( A  u.  B
) C  =  sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
91, 3, 7, 8syl21anc 1325 . 2  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  sum_ k  e.  Z  if (
k  e.  ( A  u.  B ) ,  C ,  0 ) )
10 sumsplit.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
11 sumsplit.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
12 iftrue 4092 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
1312adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
14 elun1 3780 . . . . . . . 8  |-  ( k  e.  A  ->  k  e.  ( A  u.  B
) )
1514, 2sylan2 491 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
1613, 15eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
17 iffalse 4095 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
18 0cn 10032 . . . . . . . 8  |-  0  e.  CC
1917, 18syl6eqel 2709 . . . . . . 7  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
2019adantl 482 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
2116, 20pm2.61dan 832 . . . . 5  |-  ( ph  ->  if ( k  e.  A ,  C , 
0 )  e.  CC )
2221adantr 481 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
23 sumsplit.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
24 iftrue 4092 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
2524adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
26 elun2 3781 . . . . . . . 8  |-  ( k  e.  B  ->  k  e.  ( A  u.  B
) )
2726, 2sylan2 491 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
2825, 27eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
29 iffalse 4095 . . . . . . . 8  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
3029, 18syl6eqel 2709 . . . . . . 7  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
3130adantl 482 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
3228, 31pm2.61dan 832 . . . . 5  |-  ( ph  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
3332adantr 481 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
34 sumsplit.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
35 sumsplit.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
364, 10, 11, 22, 23, 33, 34, 35isumadd 14498 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
3715addid1d 10236 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
38 noel 3919 . . . . . . . . . . 11  |-  -.  k  e.  (/)
39 elin 3796 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
40 sumsplit.3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
4140eleq2d 2687 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
4239, 41syl5rbbr 275 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
4338, 42mtbii 316 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
44 imnan 438 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
4543, 44sylibr 224 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4645imp 445 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
4746, 29syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4813, 47oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
49 iftrue 4092 . . . . . . . 8  |-  ( k  e.  ( A  u.  B )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5014, 49syl 17 . . . . . . 7  |-  ( k  e.  A  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5150adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5237, 48, 513eqtr4rd 2667 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5332addid2d 10237 . . . . . . 7  |-  ( ph  ->  ( 0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
5453adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
5517adantl 482 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
5655oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  if ( k  e.  B ,  C , 
0 ) ) )
57 biorf 420 . . . . . . . . 9  |-  ( -.  k  e.  A  -> 
( k  e.  B  <->  ( k  e.  A  \/  k  e.  B )
) )
58 elun 3753 . . . . . . . . 9  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
5957, 58syl6rbbr 279 . . . . . . . 8  |-  ( -.  k  e.  A  -> 
( k  e.  ( A  u.  B )  <-> 
k  e.  B ) )
6059adantl 482 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
k  e.  ( A  u.  B )  <->  k  e.  B ) )
6160ifbid 4108 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  if ( k  e.  B ,  C ,  0 ) )
6254, 56, 613eqtr4rd 2667 . . . . 5  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
6352, 62pm2.61dan 832 . . . 4  |-  ( ph  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
6463sumeq2sdv 14435 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  sum_ k  e.  Z  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
651unssad 3790 . . . . 5  |-  ( ph  ->  A  C_  Z )
6615ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
67 sumss2 14457 . . . . 5  |-  ( ( ( A  C_  Z  /\  A. k  e.  A  C  e.  CC )  /\  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)  ->  sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
6865, 66, 7, 67syl21anc 1325 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
691unssbd 3791 . . . . 5  |-  ( ph  ->  B  C_  Z )
7027ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
71 sumss2 14457 . . . . 5  |-  ( ( ( B  C_  Z  /\  A. k  e.  B  C  e.  CC )  /\  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)  ->  sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
7269, 70, 7, 71syl21anc 1325 . . . 4  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
7368, 72oveq12d 6668 . . 3  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
7436, 64, 733eqtr4rd 2667 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  = 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
759, 74eqtr4d 2659 1  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator