Proof of Theorem fta1glem1
Step | Hyp | Ref
| Expression |
1 | | 1cnd 10056 |
. 2
   |
2 | | fta1g.1 |
. . . . . 6
 IDomn |
3 | | isidom 19304 |
. . . . . . . 8
 IDomn  Domn  |
4 | 3 | simprbi 480 |
. . . . . . 7
 IDomn Domn |
5 | | domnnzr 19295 |
. . . . . . 7
 Domn NzRing |
6 | 4, 5 | syl 17 |
. . . . . 6
 IDomn NzRing |
7 | 2, 6 | syl 17 |
. . . . 5

NzRing |
8 | | nzrring 19261 |
. . . . 5
 NzRing   |
9 | 7, 8 | syl 17 |
. . . 4
   |
10 | | fta1g.2 |
. . . . 5
   |
11 | | fta1g.p |
. . . . . . . 8
Poly1   |
12 | | fta1g.b |
. . . . . . . 8
     |
13 | | fta1glem.k |
. . . . . . . 8
     |
14 | | fta1glem.x |
. . . . . . . 8
var1   |
15 | | fta1glem.m |
. . . . . . . 8
     |
16 | | fta1glem.a |
. . . . . . . 8
algSc   |
17 | | fta1glem.g |
. . . . . . . 8
       |
18 | | fta1g.o |
. . . . . . . 8
eval1   |
19 | 3 | simplbi 476 |
. . . . . . . . 9
 IDomn   |
20 | 2, 19 | syl 17 |
. . . . . . . 8
   |
21 | | fta1glem.5 |
. . . . . . . . . 10
              |
22 | | eqid 2622 |
. . . . . . . . . . . . 13
 s   s   |
23 | | eqid 2622 |
. . . . . . . . . . . . 13
    s       s    |
24 | | fvex 6201 |
. . . . . . . . . . . . . . 15
     |
25 | 13, 24 | eqeltri 2697 |
. . . . . . . . . . . . . 14
 |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
   |
27 | 18, 11, 22, 13 | evl1rhm 19696 |
. . . . . . . . . . . . . . . 16


RingHom  s     |
28 | 20, 27 | syl 17 |
. . . . . . . . . . . . . . 15
  RingHom  s     |
29 | 12, 23 | rhmf 18726 |
. . . . . . . . . . . . . . 15
  RingHom  s           s     |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . 14
         s     |
31 | 30, 10 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
         s     |
32 | 22, 13, 23, 2, 26, 31 | pwselbas 16149 |
. . . . . . . . . . . 12
           |
33 | | ffn 6045 |
. . . . . . . . . . . 12
               |
34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
       |
35 | | fniniseg 6338 |
. . . . . . . . . . 11
     
                        |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
            

            |
37 | 21, 36 | mpbid 222 |
. . . . . . . . 9
             |
38 | 37 | simpld 475 |
. . . . . . . 8
   |
39 | | eqid 2622 |
. . . . . . . 8
Monic1p  Monic1p   |
40 | | fta1g.d |
. . . . . . . 8
deg1    |
41 | | fta1g.w |
. . . . . . . 8
     |
42 | 11, 12, 13, 14, 15, 16, 17, 18, 7, 20, 38, 39, 40, 41 | ply1remlem 23922 |
. . . . . . 7
  Monic1p                      |
43 | 42 | simp1d 1073 |
. . . . . 6
 Monic1p    |
44 | | eqid 2622 |
. . . . . . 7
Unic1p  Unic1p   |
45 | 44, 39 | mon1puc1p 23910 |
. . . . . 6
  Monic1p   Unic1p    |
46 | 9, 43, 45 | syl2anc 693 |
. . . . 5
 Unic1p    |
47 | | eqid 2622 |
. . . . . 6
quot1p  quot1p   |
48 | 47, 11, 12, 44 | q1pcl 23915 |
. . . . 5
 
Unic1p     quot1p      |
49 | 9, 10, 46, 48 | syl3anc 1326 |
. . . 4
   quot1p      |
50 | | fta1glem.4 |
. . . . . . . 8
         |
51 | | fta1glem.3 |
. . . . . . . . 9
   |
52 | | peano2nn0 11333 |
. . . . . . . . 9

    |
53 | 51, 52 | syl 17 |
. . . . . . . 8
     |
54 | 50, 53 | eqeltrd 2701 |
. . . . . . 7
       |
55 | | fta1g.z |
. . . . . . . . 9
     |
56 | 40, 11, 55, 12 | deg1nn0clb 23850 |
. . . . . . . 8
   
       |
57 | 9, 10, 56 | syl2anc 693 |
. . . . . . 7
         |
58 | 54, 57 | mpbird 247 |
. . . . . 6
  |
59 | 37 | simprd 479 |
. . . . . . . . 9
           |
60 | | eqid 2622 |
. . . . . . . . . 10
 r   r   |
61 | 11, 12, 13, 14, 15, 16, 17, 18, 7, 20, 38, 10, 41, 60 | facth1 23924 |
. . . . . . . . 9
    r  
           |
62 | 59, 61 | mpbird 247 |
. . . . . . . 8
   r     |
63 | | eqid 2622 |
. . . . . . . . . 10
         |
64 | 11, 60, 12, 44, 63, 47 | dvdsq1p 23920 |
. . . . . . . . 9
 
Unic1p      r  
   quot1p              |
65 | 9, 10, 46, 64 | syl3anc 1326 |
. . . . . . . 8
    r  
   quot1p              |
66 | 62, 65 | mpbid 222 |
. . . . . . 7
    quot1p             |
67 | 66 | eqcomd 2628 |
. . . . . 6
    quot1p             |
68 | 11 | ply1crng 19568 |
. . . . . . . . 9

  |
69 | 20, 68 | syl 17 |
. . . . . . . 8
   |
70 | | crngring 18558 |
. . . . . . . 8

  |
71 | 69, 70 | syl 17 |
. . . . . . 7
   |
72 | 11, 12, 39 | mon1pcl 23904 |
. . . . . . . 8
 Monic1p 
  |
73 | 43, 72 | syl 17 |
. . . . . . 7
   |
74 | 12, 63, 55 | ringlz 18587 |
. . . . . . 7
          |
75 | 71, 73, 74 | syl2anc 693 |
. . . . . 6
        |
76 | 58, 67, 75 | 3netr4d 2871 |
. . . . 5
    quot1p                   |
77 | | oveq1 6657 |
. . . . . 6
   quot1p       quot1p                   |
78 | 77 | necon3i 2826 |
. . . . 5
    quot1p                   quot1p     |
79 | 76, 78 | syl 17 |
. . . 4
   quot1p     |
80 | 40, 11, 55, 12 | deg1nn0cl 23848 |
. . . 4
    quot1p      quot1p         quot1p       |
81 | 9, 49, 79, 80 | syl3anc 1326 |
. . 3
      quot1p       |
82 | 81 | nn0cnd 11353 |
. 2
      quot1p       |
83 | 51 | nn0cnd 11353 |
. 2
   |
84 | 12, 63 | crngcom 18562 |
. . . . . . 7
    quot1p   
    quot1p                    quot1p       |
85 | 69, 49, 73, 84 | syl3anc 1326 |
. . . . . 6
    quot1p                    quot1p       |
86 | 66, 85 | eqtrd 2656 |
. . . . 5
          quot1p       |
87 | 86 | fveq2d 6195 |
. . . 4
                 quot1p        |
88 | | eqid 2622 |
. . . . 5
RLReg  RLReg   |
89 | 42 | simp2d 1074 |
. . . . . . 7
       |
90 | | 1nn0 11308 |
. . . . . . 7
 |
91 | 89, 90 | syl6eqel 2709 |
. . . . . 6
       |
92 | 40, 11, 55, 12 | deg1nn0clb 23850 |
. . . . . . 7
   
       |
93 | 9, 73, 92 | syl2anc 693 |
. . . . . 6
         |
94 | 91, 93 | mpbird 247 |
. . . . 5
  |
95 | | eqid 2622 |
. . . . . . . 8
Unit  Unit   |
96 | 88, 95 | unitrrg 19293 |
. . . . . . 7

Unit  RLReg    |
97 | 9, 96 | syl 17 |
. . . . . 6
 Unit  RLReg    |
98 | 40, 95, 44 | uc1pldg 23908 |
. . . . . . 7
 Unic1p   coe1         Unit    |
99 | 46, 98 | syl 17 |
. . . . . 6
  coe1         Unit    |
100 | 97, 99 | sseldd 3604 |
. . . . 5
  coe1         RLReg    |
101 | 40, 11, 88, 12, 63, 55, 9, 73, 94, 100, 49, 79 | deg1mul2 23874 |
. . . 4
             quot1p                quot1p        |
102 | 87, 50, 101 | 3eqtr3d 2664 |
. . 3
             quot1p        |
103 | | ax-1cn 9994 |
. . . 4
 |
104 | | addcom 10222 |
. . . 4
 
       |
105 | 83, 103, 104 | sylancl 694 |
. . 3
       |
106 | 89 | oveq1d 6665 |
. . 3
           quot1p            quot1p        |
107 | 102, 105,
106 | 3eqtr3rd 2665 |
. 2
       quot1p          |
108 | 1, 82, 83, 107 | addcanad 10241 |
1
      quot1p       |