MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem1 Structured version   Visualization version   Unicode version

Theorem fta1glem1 23925
Description: Lemma for fta1g 23927. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
fta1g.p  |-  P  =  (Poly1 `  R )
fta1g.b  |-  B  =  ( Base `  P
)
fta1g.d  |-  D  =  ( deg1  `  R )
fta1g.o  |-  O  =  (eval1 `  R )
fta1g.w  |-  W  =  ( 0g `  R
)
fta1g.z  |-  .0.  =  ( 0g `  P )
fta1g.1  |-  ( ph  ->  R  e. IDomn )
fta1g.2  |-  ( ph  ->  F  e.  B )
fta1glem.k  |-  K  =  ( Base `  R
)
fta1glem.x  |-  X  =  (var1 `  R )
fta1glem.m  |-  .-  =  ( -g `  P )
fta1glem.a  |-  A  =  (algSc `  P )
fta1glem.g  |-  G  =  ( X  .-  ( A `  T )
)
fta1glem.3  |-  ( ph  ->  N  e.  NN0 )
fta1glem.4  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
fta1glem.5  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
Assertion
Ref Expression
fta1glem1  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  =  N )

Proof of Theorem fta1glem1
StepHypRef Expression
1 1cnd 10056 . 2  |-  ( ph  ->  1  e.  CC )
2 fta1g.1 . . . . . 6  |-  ( ph  ->  R  e. IDomn )
3 isidom 19304 . . . . . . . 8  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
43simprbi 480 . . . . . . 7  |-  ( R  e. IDomn  ->  R  e. Domn )
5 domnnzr 19295 . . . . . . 7  |-  ( R  e. Domn  ->  R  e. NzRing )
64, 5syl 17 . . . . . 6  |-  ( R  e. IDomn  ->  R  e. NzRing )
72, 6syl 17 . . . . 5  |-  ( ph  ->  R  e. NzRing )
8 nzrring 19261 . . . . 5  |-  ( R  e. NzRing  ->  R  e.  Ring )
97, 8syl 17 . . . 4  |-  ( ph  ->  R  e.  Ring )
10 fta1g.2 . . . . 5  |-  ( ph  ->  F  e.  B )
11 fta1g.p . . . . . . . 8  |-  P  =  (Poly1 `  R )
12 fta1g.b . . . . . . . 8  |-  B  =  ( Base `  P
)
13 fta1glem.k . . . . . . . 8  |-  K  =  ( Base `  R
)
14 fta1glem.x . . . . . . . 8  |-  X  =  (var1 `  R )
15 fta1glem.m . . . . . . . 8  |-  .-  =  ( -g `  P )
16 fta1glem.a . . . . . . . 8  |-  A  =  (algSc `  P )
17 fta1glem.g . . . . . . . 8  |-  G  =  ( X  .-  ( A `  T )
)
18 fta1g.o . . . . . . . 8  |-  O  =  (eval1 `  R )
193simplbi 476 . . . . . . . . 9  |-  ( R  e. IDomn  ->  R  e.  CRing )
202, 19syl 17 . . . . . . . 8  |-  ( ph  ->  R  e.  CRing )
21 fta1glem.5 . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( `' ( O `  F
) " { W } ) )
22 eqid 2622 . . . . . . . . . . . . 13  |-  ( R  ^s  K )  =  ( R  ^s  K )
23 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
24 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( Base `  R )  e.  _V
2513, 24eqeltri 2697 . . . . . . . . . . . . . 14  |-  K  e. 
_V
2625a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  _V )
2718, 11, 22, 13evl1rhm 19696 . . . . . . . . . . . . . . . 16  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
2820, 27syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
2912, 23rhmf 18726 . . . . . . . . . . . . . . 15  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
3028, 29syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
3130, 10ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
3222, 13, 23, 2, 26, 31pwselbas 16149 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  F
) : K --> K )
33 ffn 6045 . . . . . . . . . . . 12  |-  ( ( O `  F ) : K --> K  -> 
( O `  F
)  Fn  K )
3432, 33syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  F
)  Fn  K )
35 fniniseg 6338 . . . . . . . . . . 11  |-  ( ( O `  F )  Fn  K  ->  ( T  e.  ( `' ( O `  F )
" { W }
)  <->  ( T  e.  K  /\  ( ( O `  F ) `
 T )  =  W ) ) )
3634, 35syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( T  e.  ( `' ( O `  F ) " { W } )  <->  ( T  e.  K  /\  (
( O `  F
) `  T )  =  W ) ) )
3721, 36mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( T  e.  K  /\  ( ( O `  F ) `  T
)  =  W ) )
3837simpld 475 . . . . . . . 8  |-  ( ph  ->  T  e.  K )
39 eqid 2622 . . . . . . . 8  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
40 fta1g.d . . . . . . . 8  |-  D  =  ( deg1  `  R )
41 fta1g.w . . . . . . . 8  |-  W  =  ( 0g `  R
)
4211, 12, 13, 14, 15, 16, 17, 18, 7, 20, 38, 39, 40, 41ply1remlem 23922 . . . . . . 7  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  ( D `  G )  =  1  /\  ( `' ( O `  G ) " { W } )  =  { T } ) )
4342simp1d 1073 . . . . . 6  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
44 eqid 2622 . . . . . . 7  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
4544, 39mon1puc1p 23910 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
469, 43, 45syl2anc 693 . . . . 5  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
47 eqid 2622 . . . . . 6  |-  (quot1p `  R
)  =  (quot1p `  R
)
4847, 11, 12, 44q1pcl 23915 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( F (quot1p `  R ) G )  e.  B )
499, 10, 46, 48syl3anc 1326 . . . 4  |-  ( ph  ->  ( F (quot1p `  R
) G )  e.  B )
50 fta1glem.4 . . . . . . . 8  |-  ( ph  ->  ( D `  F
)  =  ( N  +  1 ) )
51 fta1glem.3 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
52 peano2nn0 11333 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
5351, 52syl 17 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
5450, 53eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  ( D `  F
)  e.  NN0 )
55 fta1g.z . . . . . . . . 9  |-  .0.  =  ( 0g `  P )
5640, 11, 55, 12deg1nn0clb 23850 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B )  ->  ( F  =/=  .0.  <->  ( D `  F )  e.  NN0 ) )
579, 10, 56syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( F  =/=  .0.  <->  ( D `  F )  e.  NN0 ) )
5854, 57mpbird 247 . . . . . 6  |-  ( ph  ->  F  =/=  .0.  )
5937simprd 479 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  F ) `  T
)  =  W )
60 eqid 2622 . . . . . . . . . 10  |-  ( ||r `  P
)  =  ( ||r `  P
)
6111, 12, 13, 14, 15, 16, 17, 18, 7, 20, 38, 10, 41, 60facth1 23924 . . . . . . . . 9  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  ( ( O `  F ) `  T )  =  W ) )
6259, 61mpbird 247 . . . . . . . 8  |-  ( ph  ->  G ( ||r `
 P ) F )
63 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  P )  =  ( .r `  P
)
6411, 60, 12, 44, 63, 47dvdsq1p 23920 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G (
||r `  P ) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
659, 10, 46, 64syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( G ( ||r `  P
) F  <->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) )
6662, 65mpbid 222 . . . . . . 7  |-  ( ph  ->  F  =  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )
6766eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( F (quot1p `  R ) G ) ( .r `  P
) G )  =  F )
6811ply1crng 19568 . . . . . . . . 9  |-  ( R  e.  CRing  ->  P  e.  CRing
)
6920, 68syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  CRing )
70 crngring 18558 . . . . . . . 8  |-  ( P  e.  CRing  ->  P  e.  Ring )
7169, 70syl 17 . . . . . . 7  |-  ( ph  ->  P  e.  Ring )
7211, 12, 39mon1pcl 23904 . . . . . . . 8  |-  ( G  e.  (Monic1p `  R )  ->  G  e.  B )
7343, 72syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  B )
7412, 63, 55ringlz 18587 . . . . . . 7  |-  ( ( P  e.  Ring  /\  G  e.  B )  ->  (  .0.  ( .r `  P
) G )  =  .0.  )
7571, 73, 74syl2anc 693 . . . . . 6  |-  ( ph  ->  (  .0.  ( .r
`  P ) G )  =  .0.  )
7658, 67, 753netr4d 2871 . . . . 5  |-  ( ph  ->  ( ( F (quot1p `  R ) G ) ( .r `  P
) G )  =/=  (  .0.  ( .r
`  P ) G ) )
77 oveq1 6657 . . . . . 6  |-  ( ( F (quot1p `  R ) G )  =  .0.  ->  ( ( F (quot1p `  R
) G ) ( .r `  P ) G )  =  (  .0.  ( .r `  P ) G ) )
7877necon3i 2826 . . . . 5  |-  ( ( ( F (quot1p `  R
) G ) ( .r `  P ) G )  =/=  (  .0.  ( .r `  P
) G )  -> 
( F (quot1p `  R
) G )  =/= 
.0.  )
7976, 78syl 17 . . . 4  |-  ( ph  ->  ( F (quot1p `  R
) G )  =/= 
.0.  )
8040, 11, 55, 12deg1nn0cl 23848 . . . 4  |-  ( ( R  e.  Ring  /\  ( F (quot1p `  R ) G )  e.  B  /\  ( F (quot1p `  R ) G )  =/=  .0.  )  ->  ( D `  ( F (quot1p `  R ) G ) )  e.  NN0 )
819, 49, 79, 80syl3anc 1326 . . 3  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  e.  NN0 )
8281nn0cnd 11353 . 2  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  e.  CC )
8351nn0cnd 11353 . 2  |-  ( ph  ->  N  e.  CC )
8412, 63crngcom 18562 . . . . . . 7  |-  ( ( P  e.  CRing  /\  ( F (quot1p `  R ) G )  e.  B  /\  G  e.  B )  ->  ( ( F (quot1p `  R ) G ) ( .r `  P
) G )  =  ( G ( .r
`  P ) ( F (quot1p `  R ) G ) ) )
8569, 49, 73, 84syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( F (quot1p `  R ) G ) ( .r `  P
) G )  =  ( G ( .r
`  P ) ( F (quot1p `  R ) G ) ) )
8666, 85eqtrd 2656 . . . . 5  |-  ( ph  ->  F  =  ( G ( .r `  P
) ( F (quot1p `  R ) G ) ) )
8786fveq2d 6195 . . . 4  |-  ( ph  ->  ( D `  F
)  =  ( D `
 ( G ( .r `  P ) ( F (quot1p `  R
) G ) ) ) )
88 eqid 2622 . . . . 5  |-  (RLReg `  R )  =  (RLReg `  R )
8942simp2d 1074 . . . . . . 7  |-  ( ph  ->  ( D `  G
)  =  1 )
90 1nn0 11308 . . . . . . 7  |-  1  e.  NN0
9189, 90syl6eqel 2709 . . . . . 6  |-  ( ph  ->  ( D `  G
)  e.  NN0 )
9240, 11, 55, 12deg1nn0clb 23850 . . . . . . 7  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( G  =/=  .0.  <->  ( D `  G )  e.  NN0 ) )
939, 73, 92syl2anc 693 . . . . . 6  |-  ( ph  ->  ( G  =/=  .0.  <->  ( D `  G )  e.  NN0 ) )
9491, 93mpbird 247 . . . . 5  |-  ( ph  ->  G  =/=  .0.  )
95 eqid 2622 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
9688, 95unitrrg 19293 . . . . . . 7  |-  ( R  e.  Ring  ->  (Unit `  R )  C_  (RLReg `  R ) )
979, 96syl 17 . . . . . 6  |-  ( ph  ->  (Unit `  R )  C_  (RLReg `  R )
)
9840, 95, 44uc1pldg 23908 . . . . . . 7  |-  ( G  e.  (Unic1p `  R )  -> 
( (coe1 `  G ) `  ( D `  G ) )  e.  (Unit `  R ) )
9946, 98syl 17 . . . . . 6  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  (Unit `  R ) )
10097, 99sseldd 3604 . . . . 5  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  (RLReg `  R ) )
10140, 11, 88, 12, 63, 55, 9, 73, 94, 100, 49, 79deg1mul2 23874 . . . 4  |-  ( ph  ->  ( D `  ( G ( .r `  P ) ( F (quot1p `  R ) G ) ) )  =  ( ( D `  G )  +  ( D `  ( F (quot1p `  R ) G ) ) ) )
10287, 50, 1013eqtr3d 2664 . . 3  |-  ( ph  ->  ( N  +  1 )  =  ( ( D `  G )  +  ( D `  ( F (quot1p `  R ) G ) ) ) )
103 ax-1cn 9994 . . . 4  |-  1  e.  CC
104 addcom 10222 . . . 4  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  +  1 )  =  ( 1  +  N ) )
10583, 103, 104sylancl 694 . . 3  |-  ( ph  ->  ( N  +  1 )  =  ( 1  +  N ) )
10689oveq1d 6665 . . 3  |-  ( ph  ->  ( ( D `  G )  +  ( D `  ( F (quot1p `  R ) G ) ) )  =  ( 1  +  ( D `  ( F (quot1p `  R ) G ) ) ) )
107102, 105, 1063eqtr3rd 2665 . 2  |-  ( ph  ->  ( 1  +  ( D `  ( F (quot1p `  R ) G ) ) )  =  ( 1  +  N
) )
1081, 82, 83, 107addcanad 10241 1  |-  ( ph  ->  ( D `  ( F (quot1p `  R ) G ) )  =  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100    ^s cpws 16107   -gcsg 17424   Ringcrg 18547   CRingccrg 18548   ||rcdsr 18638  Unitcui 18639   RingHom crh 18712  NzRingcnzr 19257  RLRegcrlreg 19279  Domncdomn 19280  IDomncidom 19281  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548  eval1ce1 19679   deg1 cdg1 23814  Monic1pcmn1 23885  Unic1pcuc1p 23886  quot1pcq1p 23887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-mdeg 23815  df-deg1 23816  df-mon1 23890  df-uc1p 23891  df-q1p 23892  df-r1p 23893
This theorem is referenced by:  fta1glem2  23926
  Copyright terms: Public domain W3C validator