MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo Structured version   Visualization version   Unicode version

Theorem uzwo 11751
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Distinct variable group:    j, k, S
Allowed substitution hints:    M( j, k)

Proof of Theorem uzwo
Dummy variables  t  h  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . . . . . . . 12  |-  ( h  =  M  ->  (
h  <_  t  <->  M  <_  t ) )
21ralbidv 2986 . . . . . . . . . . 11  |-  ( h  =  M  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  M  <_  t ) )
32imbi2d 330 . . . . . . . . . 10  |-  ( h  =  M  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t ) ) )
4 breq1 4656 . . . . . . . . . . . 12  |-  ( h  =  m  ->  (
h  <_  t  <->  m  <_  t ) )
54ralbidv 2986 . . . . . . . . . . 11  |-  ( h  =  m  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  m  <_  t ) )
65imbi2d 330 . . . . . . . . . 10  |-  ( h  =  m  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  m  <_  t ) ) )
7 breq1 4656 . . . . . . . . . . . 12  |-  ( h  =  ( m  + 
1 )  ->  (
h  <_  t  <->  ( m  +  1 )  <_ 
t ) )
87ralbidv 2986 . . . . . . . . . . 11  |-  ( h  =  ( m  + 
1 )  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
98imbi2d 330 . . . . . . . . . 10  |-  ( h  =  ( m  + 
1 )  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
10 breq1 4656 . . . . . . . . . . . 12  |-  ( h  =  n  ->  (
h  <_  t  <->  n  <_  t ) )
1110ralbidv 2986 . . . . . . . . . . 11  |-  ( h  =  n  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  n  <_  t ) )
1211imbi2d 330 . . . . . . . . . 10  |-  ( h  =  n  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  n  <_  t ) ) )
13 ssel 3597 . . . . . . . . . . . . . 14  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( t  e.  S  ->  t  e.  ( ZZ>= `  M )
) )
14 eluzle 11700 . . . . . . . . . . . . . 14  |-  ( t  e.  ( ZZ>= `  M
)  ->  M  <_  t )
1513, 14syl6 35 . . . . . . . . . . . . 13  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( t  e.  S  ->  M  <_ 
t ) )
1615ralrimiv 2965 . . . . . . . . . . . 12  |-  ( S 
C_  ( ZZ>= `  M
)  ->  A. t  e.  S  M  <_  t )
1716adantr 481 . . . . . . . . . . 11  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t )
1817a1i 11 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t ) )
19 uzssz 11707 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  C_  ZZ
20 sstr 3611 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  ( ZZ>=
`  M )  C_  ZZ )  ->  S  C_  ZZ )
2119, 20mpan2 707 . . . . . . . . . . . 12  |-  ( S 
C_  ( ZZ>= `  M
)  ->  S  C_  ZZ )
22 eluzelz 11697 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  M
)  ->  m  e.  ZZ )
23 breq1 4656 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  m  ->  (
j  <_  t  <->  m  <_  t ) )
2423ralbidv 2986 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  m  ->  ( A. t  e.  S  j  <_  t  <->  A. t  e.  S  m  <_  t ) )
2524rspcev 3309 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  S  /\  A. t  e.  S  m  <_  t )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
2625expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( A. t  e.  S  m  <_  t  ->  ( m  e.  S  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
2726con3rr3 151 . . . . . . . . . . . . . . . 16  |-  ( -. 
E. j  e.  S  A. t  e.  S  j  <_  t  ->  ( A. t  e.  S  m  <_  t  ->  -.  m  e.  S )
)
28 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( S  C_  ZZ  /\  t  e.  S )  ->  t  e.  ZZ )
29 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  ZZ  ->  m  e.  RR )
30 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  e.  ZZ  ->  t  e.  RR )
31 letri3 10123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  RR  /\  t  e.  RR )  ->  ( m  =  t  <-> 
( m  <_  t  /\  t  <_  m ) ) )
3229, 30, 31syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( m  =  t  <-> 
( m  <_  t  /\  t  <_  m ) ) )
33 zleltp1 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <_  m  <->  t  <  ( m  + 
1 ) ) )
34 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
3529, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  RR )
36 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( t  e.  RR  /\  ( m  +  1
)  e.  RR )  ->  ( t  < 
( m  +  1 )  <->  -.  ( m  +  1 )  <_ 
t ) )
3730, 35, 36syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <  (
m  +  1 )  <->  -.  ( m  +  1 )  <_  t )
)
3833, 37bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <_  m  <->  -.  ( m  +  1 )  <_  t )
)
3938ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( t  <_  m  <->  -.  ( m  +  1 )  <_  t )
)
4039anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( ( m  <_ 
t  /\  t  <_  m )  <->  ( m  <_ 
t  /\  -.  (
m  +  1 )  <_  t ) ) )
4132, 40bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( m  =  t  <-> 
( m  <_  t  /\  -.  ( m  + 
1 )  <_  t
) ) )
4228, 41sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  =  t  <->  ( m  <_ 
t  /\  -.  (
m  +  1 )  <_  t ) ) )
43 eleq1a 2696 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  e.  S  ->  (
m  =  t  ->  m  e.  S )
)
4443ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  =  t  ->  m  e.  S ) )
4542, 44sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( (
m  <_  t  /\  -.  ( m  +  1 )  <_  t )  ->  m  e.  S ) )
4645expd 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  <_  t  ->  ( -.  ( m  +  1
)  <_  t  ->  m  e.  S ) ) )
47 con1 143 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( -.  ( m  + 
1 )  <_  t  ->  m  e.  S )  ->  ( -.  m  e.  S  ->  ( m  +  1 )  <_ 
t ) )
4846, 47syl6 35 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  <_  t  ->  ( -.  m  e.  S  ->  ( m  +  1 )  <_  t ) ) )
4948com23 86 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( -.  m  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_  t ) ) )
5049exp32 631 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ZZ  ->  ( S  C_  ZZ  ->  (
t  e.  S  -> 
( -.  m  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_ 
t ) ) ) ) )
5150com34 91 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ZZ  ->  ( S  C_  ZZ  ->  ( -.  m  e.  S  ->  ( t  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_  t )
) ) ) )
5251imp41 619 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  m  e.  S )  /\  t  e.  S )  ->  (
m  <_  t  ->  ( m  +  1 )  <_  t ) )
5352ralimdva 2962 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  m  e.  S
)  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
5453ex 450 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ZZ  /\  S  C_  ZZ )  -> 
( -.  m  e.  S  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5527, 54sylan9r 690 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  ( A. t  e.  S  m  <_  t  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5655pm2.43d 53 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
5756expl 648 . . . . . . . . . . . . 13  |-  ( m  e.  ZZ  ->  (
( S  C_  ZZ  /\ 
-.  E. j  e.  S  A. t  e.  S  j  <_  t )  -> 
( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1
)  <_  t )
) )
5822, 57syl 17 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ZZ  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5921, 58sylani 686 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
6059a2d 29 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  m  <_  t )  -> 
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
613, 6, 9, 12, 18, 60uzind4 11746 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  n  <_  t ) )
62 breq1 4656 . . . . . . . . . . . . . 14  |-  ( j  =  n  ->  (
j  <_  t  <->  n  <_  t ) )
6362ralbidv 2986 . . . . . . . . . . . . 13  |-  ( j  =  n  ->  ( A. t  e.  S  j  <_  t  <->  A. t  e.  S  n  <_  t ) )
6463rspcev 3309 . . . . . . . . . . . 12  |-  ( ( n  e.  S  /\  A. t  e.  S  n  <_  t )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
6564expcom 451 . . . . . . . . . . 11  |-  ( A. t  e.  S  n  <_  t  ->  ( n  e.  S  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
6665con3rr3 151 . . . . . . . . . 10  |-  ( -. 
E. j  e.  S  A. t  e.  S  j  <_  t  ->  ( A. t  e.  S  n  <_  t  ->  -.  n  e.  S )
)
6766adantl 482 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  n  <_  t  ->  -.  n  e.  S )
)
6861, 67sylcom 30 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S ) )
69 ssel 3597 . . . . . . . . . 10  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( n  e.  S  ->  n  e.  ( ZZ>= `  M )
) )
7069con3rr3 151 . . . . . . . . 9  |-  ( -.  n  e.  ( ZZ>= `  M )  ->  ( S  C_  ( ZZ>= `  M
)  ->  -.  n  e.  S ) )
7170adantrd 484 . . . . . . . 8  |-  ( -.  n  e.  ( ZZ>= `  M )  ->  (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S
) )
7268, 71pm2.61i 176 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S )
7372ex 450 . . . . . 6  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  -.  n  e.  S ) )
7473alrimdv 1857 . . . . 5  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  A. n  -.  n  e.  S
) )
75 eq0 3929 . . . . 5  |-  ( S  =  (/)  <->  A. n  -.  n  e.  S )
7674, 75syl6ibr 242 . . . 4  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  S  =  (/) ) )
7776necon1ad 2811 . . 3  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( S  =/=  (/)  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
7877imp 445 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
79 breq2 4657 . . . 4  |-  ( t  =  k  ->  (
j  <_  t  <->  j  <_  k ) )
8079cbvralv 3171 . . 3  |-  ( A. t  e.  S  j  <_  t  <->  A. k  e.  S  j  <_  k )
8180rexbii 3041 . 2  |-  ( E. j  e.  S  A. t  e.  S  j  <_  t  <->  E. j  e.  S  A. k  e.  S  j  <_  k )
8278, 81sylib 208 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  uzwo2  11752  nnwo  11753  infssuzle  11771  infssuzcl  11772  uzwo4  39221
  Copyright terms: Public domain W3C validator