MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem5 Structured version   Visualization version   Unicode version

Theorem wlkiswwlks2lem5 26759
Description: Lemma 5 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f  |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } ) )
wlkiswwlks2lem.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
wlkiswwlks2lem5  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  F  e. Word  dom  E
) )
Distinct variable groups:    x, P    x, E    x, V    i, F    i, G    P, i    i, V, x    i, E   
x, G
Allowed substitution hint:    F( x)

Proof of Theorem wlkiswwlks2lem5
StepHypRef Expression
1 wlkiswwlks2lem.e . . . . . . . . 9  |-  E  =  (iEdg `  G )
21uspgrf1oedg 26068 . . . . . . . 8  |-  ( G  e. USPGraph  ->  E : dom  E -1-1-onto-> (Edg
`  G ) )
31rneqi 5352 . . . . . . . . . . 11  |-  ran  E  =  ran  (iEdg `  G
)
4 edgval 25941 . . . . . . . . . . 11  |-  (Edg `  G )  =  ran  (iEdg `  G )
53, 4eqtr4i 2647 . . . . . . . . . 10  |-  ran  E  =  (Edg `  G )
65a1i 11 . . . . . . . . 9  |-  ( G  e. USPGraph  ->  ran  E  =  (Edg `  G ) )
76f1oeq3d 6134 . . . . . . . 8  |-  ( G  e. USPGraph  ->  ( E : dom  E -1-1-onto-> ran  E  <->  E : dom  E -1-1-onto-> (Edg `  G )
) )
82, 7mpbird 247 . . . . . . 7  |-  ( G  e. USPGraph  ->  E : dom  E -1-1-onto-> ran 
E )
983ad2ant1 1082 . . . . . 6  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  E : dom  E -1-1-onto-> ran 
E )
109ad2antrr 762 . . . . 5  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E )  /\  x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  E : dom  E -1-1-onto-> ran  E )
11 simpr 477 . . . . . . . 8  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) )
12 fveq2 6191 . . . . . . . . . . 11  |-  ( i  =  x  ->  ( P `  i )  =  ( P `  x ) )
13 oveq1 6657 . . . . . . . . . . . 12  |-  ( i  =  x  ->  (
i  +  1 )  =  ( x  + 
1 ) )
1413fveq2d 6195 . . . . . . . . . . 11  |-  ( i  =  x  ->  ( P `  ( i  +  1 ) )  =  ( P `  ( x  +  1
) ) )
1512, 14preq12d 4276 . . . . . . . . . 10  |-  ( i  =  x  ->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  =  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) } )
1615eleq1d 2686 . . . . . . . . 9  |-  ( i  =  x  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  <->  { ( P `  x
) ,  ( P `
 ( x  + 
1 ) ) }  e.  ran  E ) )
1716adantl 482 . . . . . . . 8  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  /\  i  =  x )  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  <->  { ( P `  x
) ,  ( P `
 ( x  + 
1 ) ) }  e.  ran  E ) )
1811, 17rspcdv 3312 . . . . . . 7  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E  ->  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  e.  ran  E ) )
1918impancom 456 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E
)  ->  ( x  e.  ( 0..^ ( (
# `  P )  -  1 ) )  ->  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  e.  ran  E ) )
2019imp 445 . . . . 5  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E )  /\  x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  e.  ran  E )
21 f1ocnvdm 6540 . . . . 5  |-  ( ( E : dom  E -1-1-onto-> ran  E  /\  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  e.  ran  E )  ->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } )  e.  dom  E )
2210, 20, 21syl2anc 693 . . . 4  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E )  /\  x  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } )  e.  dom  E )
23 wlkiswwlks2lem.f . . . 4  |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } ) )
2422, 23fmptd 6385 . . 3  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E
)  ->  F :
( 0..^ ( (
# `  P )  -  1 ) ) --> dom  E )
25 iswrdi 13309 . . 3  |-  ( F : ( 0..^ ( ( # `  P
)  -  1 ) ) --> dom  E  ->  F  e. Word  dom  E )
2624, 25syl 17 . 2  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E
)  ->  F  e. Word  dom 
E )
2726ex 450 1  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  F  e. Word  dom  E
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266  ..^cfzo 12465   #chash 13117  Word cword 13291  iEdgciedg 25875  Edgcedg 25939   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-word 13299  df-edg 25940  df-uspgr 26045
This theorem is referenced by:  wlkiswwlks2lem6  26760
  Copyright terms: Public domain W3C validator