MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem4 Structured version   Visualization version   Unicode version

Theorem wlkiswwlks2lem4 26758
Description: Lemma 4 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f  |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } ) )
wlkiswwlks2lem.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
wlkiswwlks2lem4  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
Distinct variable groups:    x, P    x, E    x, V    i, F    i, G    P, i    i, V, x
Allowed substitution hints:    E( i)    F( x)    G( x)

Proof of Theorem wlkiswwlks2lem4
StepHypRef Expression
1 wlkiswwlks2lem.f . . . 4  |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) )  |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1
) ) } ) )
21wlkiswwlks2lem1 26755 . . 3  |-  ( ( P  e. Word  V  /\  1  <_  ( # `  P
) )  ->  ( # `
 F )  =  ( ( # `  P
)  -  1 ) )
323adant1 1079 . 2  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( # `  F
)  =  ( (
# `  P )  -  1 ) )
4 lencl 13324 . . . . . . . . . 10  |-  ( P  e. Word  V  ->  ( # `
 P )  e. 
NN0 )
543ad2ant2 1083 . . . . . . . . 9  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( # `  P
)  e.  NN0 )
61wlkiswwlks2lem2 26756 . . . . . . . . 9  |-  ( ( ( # `  P
)  e.  NN0  /\  i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) )  ->  ( F `  i )  =  ( `' E `  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
75, 6sylan 488 . . . . . . . 8  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  ( F `  i )  =  ( `' E `  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
87adantr 481 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  /\  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E )  ->  ( F `  i )  =  ( `' E `  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
98fveq2d 6195 . . . . . 6  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  /\  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E )  ->  ( E `  ( F `  i ) )  =  ( E `  ( `' E `  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
10 wlkiswwlks2lem.e . . . . . . . . . . 11  |-  E  =  (iEdg `  G )
1110uspgrf1oedg 26068 . . . . . . . . . 10  |-  ( G  e. USPGraph  ->  E : dom  E -1-1-onto-> (Edg
`  G ) )
1210rneqi 5352 . . . . . . . . . . . 12  |-  ran  E  =  ran  (iEdg `  G
)
13 edgval 25941 . . . . . . . . . . . 12  |-  (Edg `  G )  =  ran  (iEdg `  G )
1412, 13eqtr4i 2647 . . . . . . . . . . 11  |-  ran  E  =  (Edg `  G )
15 f1oeq3 6129 . . . . . . . . . . 11  |-  ( ran 
E  =  (Edg `  G )  ->  ( E : dom  E -1-1-onto-> ran  E  <->  E : dom  E -1-1-onto-> (Edg `  G ) ) )
1614, 15ax-mp 5 . . . . . . . . . 10  |-  ( E : dom  E -1-1-onto-> ran  E  <->  E : dom  E -1-1-onto-> (Edg `  G ) )
1711, 16sylibr 224 . . . . . . . . 9  |-  ( G  e. USPGraph  ->  E : dom  E -1-1-onto-> ran 
E )
18173ad2ant1 1082 . . . . . . . 8  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  E : dom  E -1-1-onto-> ran 
E )
1918adantr 481 . . . . . . 7  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  E : dom  E -1-1-onto-> ran  E )
20 f1ocnvfv2 6533 . . . . . . 7  |-  ( ( E : dom  E -1-1-onto-> ran  E  /\  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E )  ->  ( E `  ( `' E `  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )
2119, 20sylan 488 . . . . . 6  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  /\  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E )  ->  ( E `  ( `' E `  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )
229, 21eqtrd 2656 . . . . 5  |-  ( ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P
) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  /\  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E )  ->  ( E `  ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )
2322ex 450 . . . 4  |-  ( ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_ 
( # `  P ) )  /\  i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) )  ->  ( {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  ran  E  -> 
( E `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
2423ralimdva 2962 . . 3  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
25 oveq2 6658 . . . . 5  |-  ( (
# `  F )  =  ( ( # `  P )  -  1 )  ->  ( 0..^ ( # `  F
) )  =  ( 0..^ ( ( # `  P )  -  1 ) ) )
2625raleqdv 3144 . . . 4  |-  ( (
# `  F )  =  ( ( # `  P )  -  1 )  ->  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
2726imbi2d 330 . . 3  |-  ( (
# `  F )  =  ( ( # `  P )  -  1 )  ->  ( ( A. i  e.  (
0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) } )  <->  ( A. i  e.  ( 0..^ ( ( # `  P
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
2824, 27syl5ibr 236 . 2  |-  ( (
# `  F )  =  ( ( # `  P )  -  1 )  ->  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
293, 28mpcom 38 1  |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `
 P ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291  iEdgciedg 25875  Edgcedg 25939   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uspgr 26045
This theorem is referenced by:  wlkiswwlks2lem6  26760
  Copyright terms: Public domain W3C validator