MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonwlk1l Structured version   Visualization version   Unicode version

Theorem wlkonwlk1l 26559
Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkonwlk1l.w  |-  ( ph  ->  F (Walks `  G
) P )
Assertion
Ref Expression
wlkonwlk1l  |-  ( ph  ->  F ( ( P `
 0 ) (WalksOn `  G ) ( lastS  `  P
) ) P )

Proof of Theorem wlkonwlk1l
StepHypRef Expression
1 wlkonwlk1l.w . 2  |-  ( ph  ->  F (Walks `  G
) P )
2 eqidd 2623 . 2  |-  ( ph  ->  ( P `  0
)  =  ( P `
 0 ) )
3 wlklenvm1 26517 . . . . 5  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  =  ( (
# `  P )  -  1 ) )
43fveq2d 6195 . . . 4  |-  ( F (Walks `  G ) P  ->  ( P `  ( # `  F ) )  =  ( P `
 ( ( # `  P )  -  1 ) ) )
5 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
65wlkpwrd 26513 . . . . 5  |-  ( F (Walks `  G ) P  ->  P  e. Word  (Vtx `  G ) )
7 lsw 13351 . . . . 5  |-  ( P  e. Word  (Vtx `  G
)  ->  ( lastS  `  P
)  =  ( P `
 ( ( # `  P )  -  1 ) ) )
86, 7syl 17 . . . 4  |-  ( F (Walks `  G ) P  ->  ( lastS  `  P )  =  ( P `  ( ( # `  P
)  -  1 ) ) )
94, 8eqtr4d 2659 . . 3  |-  ( F (Walks `  G ) P  ->  ( P `  ( # `  F ) )  =  ( lastS  `  P
) )
101, 9syl 17 . 2  |-  ( ph  ->  ( P `  ( # `
 F ) )  =  ( lastS  `  P
) )
11 wlkcl 26511 . . . . . . . 8  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  e.  NN0 )
12 nn0p1nn 11332 . . . . . . . 8  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  +  1 )  e.  NN )
1311, 12syl 17 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  ( ( # `  F )  +  1 )  e.  NN )
14 wlklenvp1 26514 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  ( # `  P
)  =  ( (
# `  F )  +  1 ) )
1513, 6, 14jca32 558 . . . . . 6  |-  ( F (Walks `  G ) P  ->  ( ( (
# `  F )  +  1 )  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) ) ) )
16 fstwrdne0 13345 . . . . . . 7  |-  ( ( ( ( # `  F
)  +  1 )  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) ) )  ->  ( P `  0 )  e.  (Vtx `  G )
)
17 lswlgt0cl 13356 . . . . . . 7  |-  ( ( ( ( # `  F
)  +  1 )  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) ) )  ->  ( lastS  `  P
)  e.  (Vtx `  G ) )
1816, 17jca 554 . . . . . 6  |-  ( ( ( ( # `  F
)  +  1 )  e.  NN  /\  ( P  e. Word  (Vtx `  G
)  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) ) )  ->  ( ( P `  0 )  e.  (Vtx `  G )  /\  ( lastS  `  P )  e.  (Vtx `  G
) ) )
1915, 18syl 17 . . . . 5  |-  ( F (Walks `  G ) P  ->  ( ( P `
 0 )  e.  (Vtx `  G )  /\  ( lastS  `  P )  e.  (Vtx `  G
) ) )
20 eqid 2622 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
2120wlkf 26510 . . . . . 6  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  (iEdg `  G ) )
22 wrdv 13320 . . . . . 6  |-  ( F  e. Word  dom  (iEdg `  G
)  ->  F  e. Word  _V )
2321, 22syl 17 . . . . 5  |-  ( F (Walks `  G ) P  ->  F  e. Word  _V )
2419, 23, 6jca32 558 . . . 4  |-  ( F (Walks `  G ) P  ->  ( ( ( P `  0 )  e.  (Vtx `  G
)  /\  ( lastS  `  P
)  e.  (Vtx `  G ) )  /\  ( F  e. Word  _V  /\  P  e. Word  (Vtx `  G
) ) ) )
251, 24syl 17 . . 3  |-  ( ph  ->  ( ( ( P `
 0 )  e.  (Vtx `  G )  /\  ( lastS  `  P )  e.  (Vtx `  G
) )  /\  ( F  e. Word  _V  /\  P  e. Word  (Vtx `  G )
) ) )
265iswlkon 26553 . . 3  |-  ( ( ( ( P ` 
0 )  e.  (Vtx
`  G )  /\  ( lastS  `  P )  e.  (Vtx `  G )
)  /\  ( F  e. Word  _V  /\  P  e. Word 
(Vtx `  G )
) )  ->  ( F ( ( P `
 0 ) (WalksOn `  G ) ( lastS  `  P
) ) P  <->  ( F
(Walks `  G ) P  /\  ( P ` 
0 )  =  ( P `  0 )  /\  ( P `  ( # `  F ) )  =  ( lastS  `  P
) ) ) )
2725, 26syl 17 . 2  |-  ( ph  ->  ( F ( ( P `  0 ) (WalksOn `  G )
( lastS  `  P ) ) P  <->  ( F (Walks `  G ) P  /\  ( P `  0 )  =  ( P ` 
0 )  /\  ( P `  ( # `  F
) )  =  ( lastS  `  P ) ) ) )
281, 2, 10, 27mpbir3and 1245 1  |-  ( ph  ->  F ( ( P `
 0 ) (WalksOn `  G ) ( lastS  `  P
) ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292   #chash 13117  Word cword 13291   lastS clsw 13292  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-wlks 26495  df-wlkson 26496
This theorem is referenced by:  3wlkond  27031
  Copyright terms: Public domain W3C validator